2,520 research outputs found

    Duration of heart failure and the risk of atrial fibrillation: different mechanisms at different times?

    Get PDF
    Chronic heart failure increases the risk of atrial fibrillation (AF), with the prevalence of AF paralleling the severity of heart failure.1 Factors that underlie this increased susceptibility to AF may include electrical, structural, and neurohumoral changes.2 In AF, it is recognized that atrial electrophysiological remodelling occurs and contributes to the perpetuation of the arrhythmia, most notably the decrease of effective refractory period (ERP) which predisposes to re-entry by shortening the wavelength. Does heart failure cause similar changes in atrial electrophysiology that predispose to the arrhythmia

    Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF

    Get PDF
    <b>Background:</b> Left ventricular systolic dysfunction (LVSD) is a risk factor for atrial fibrillation (AF), but the atrial cellular electrophysiological mechanisms in humans are unclear. Objective This study sought to investigate whether LVSD in patients who are in sinus rhythm (SR) is associated with atrial cellular electrophysiological changes that could predispose to AF. <b>Methods:</b> Right atrial myocytes were obtained from 214 consenting patients in SR who were undergoing cardiac surgery. Action potentials or ion currents were measured using the whole-cell-patch clamp technique. <b>Results:</b> The presence of moderate or severe LVSD was associated with a shortened atrial cellular effective refractory period (ERP) (209 ± 8 ms; 52 cells, 18 patients vs 233 ± 7 ms; 134 cells, 49 patients; P <0.05); confirmed by multiple linear regression analysis. The left ventricular ejection fraction (LVEF) was markedly lower in patients with moderate or severe LVSD (36% ± 4%, n = 15) than in those without LVSD (62% ± 2%, n = 31; P <0.05). In cells from patients with LVEF ≤ 45%, the ERP and action potential duration at 90% repolarization were shorter than in those from patients with LVEF > 45%, by 24% and 18%, respectively. The LVEF and ERP were positively correlated (r = 0.65, P <0.05). The L-type calcium ion current, inward rectifier potassium ion current, and sustained outward ion current were unaffected by LVSD. The transient outward potassium ion current was decreased by 34%, with a positive shift in its activation voltage, and no change in its decay kinetics. <b>Conclusion:</b> LVSD in patients in SR is independently associated with a shortening of the atrial cellular ERP, which may be expected to contribute to a predisposition to AF

    Cellular bases for human atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) causes substantial morbidity and mortality. It may be triggered and sustained by either reentrant or nonreentrant electrical activity. Human atrial cellular refractory period is shortened in chronic AF, likely aiding reentry. The ionic and molecular mechanisms are not fully understood and may include increased inward rectifier K<sup>+</sup> current and altered Ca<sup>2+</sup> handling. Heart failure, a major cause of AF, may involve arrhythmogenic atrial electrical remodeling, but the pattern is unclear in humans. Beta-blocker therapy prolongs atrial cell refractory period; a potentially antiarrhythmic influence, but the ionic and molecular mechanisms are unclear. The search for drugs to suppress AF without causing ventricular arrhythmias has been aided by basic studies of cellular mechanisms of AF. It remains to be seen whether such drugs will improve patient treatment

    Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic beta-adrenoceptor blockade

    Get PDF
    <b>1.</b> 5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT<sub>4</sub> receptors. <b>2.</b> The aims of this study were to examine the effects of 5-HT on the L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with β-adrenoceptor antagonists. <b>3.</b> Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37ºC. <b>4.</b> 5-HT (1 n-10 μM) caused a concentration-dependent increase in <i>I</i><sub>CaL</sub>, which was potentiated in cells from β-blocked (maximum response to 5-HT, E<sub>max</sub>=299±12% increase above control) compared to non-β-blocked patients (E<sub>max</sub>=220±6%, P<0.05), but with no change in either the potency (log EC<sub>50</sub>: -7.09±0.07 vs -7.26±0.06) or Hill coefficient (<i>n</i><sub>H</sub>: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration-response curve. <b>5.</b> 5-HT (10 μM) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from β-blocked patients (of 37±10 ms, i.e. 589±197%) vs non-β-blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD<sub>90</sub> and the ERP were unaffected by 5-HT. <b>6.</b> Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from β-blocked, compared to zero of 16 cells from the non-β-blocked patients (P<0.05). <b>7.</b> In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic β-adrenoceptor blockade was associated with arrhythmic potential

    Post-operative atrial fibrillation is influenced by beta-blocker therapy but not by pre-operative atrial cellular electrophysiology

    Get PDF
    We investigated whether post-cardiac surgery (CS) new-onset atrial fibrillation (AF) is predicted by pre-CS atrial cellular electrophysiology, and whether the antiarrhythmic effect of beta-blocker therapy may involve pre-CS pharmacological remodeling. Atrial myocytes were obtained from consenting patients in sinus rhythm, just prior to CS. Action potentials and ion currents were recorded using whole-cell patch-clamp technique. Post-CS AF occurred in 53 of 212 patients (25%). Those with post-CS AF were older than those without (67 ± 2 vs 62 ± 1 years, P = 0.005). In cells from patients with post-CS AF, the action potential duration at 50% and 90% repolarization, maximum upstroke velocity, and effective refractory period (ERP) were 13 ± 4 ms, 217 ± 16 ms, 185 ± 10 V/s, and 216 ± 14 ms, respectively (n = 30 cells, 11 patients). Peak L-type Ca2+ current, transient outward and inward rectifier K+ currents, and the sustained outward current were −5.0 ± 0.5, 12.9 ± 2.4, −4.1 ± 0.4, and 9.7 ± 1.0 pA/pF, respectively (13-62 cells, 7-19 patients). None of these values were significantly different in cells from patients without post-CS AF (P > 0.05 for each, 60-279 cells, 29-86 patients), confirmed by multiple and logistic regression. In patients treated >7 days with a beta-blocker pre-CS, the incidence of post-CS AF was lower than in non-beta-blocked patients (13% vs 27%, P = 0.038). Pre-CS beta-blockade was associated with a prolonged pre-CS atrial cellular ERP (P = 0.001), by a similar degree (∼20%) in those with and without post-CS AF. Conclusion: Pre-CS human atrial cellular electrophysiology does not predict post-CS AF. Chronic beta-blocker therapy is associated with a reduced incidence of post-CS AF, unrelated to a pre-CS ERP-prolonging effect of this treatment
    • …
    corecore