2,116 research outputs found

    Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF

    Get PDF
    <b>Background:</b> Left ventricular systolic dysfunction (LVSD) is a risk factor for atrial fibrillation (AF), but the atrial cellular electrophysiological mechanisms in humans are unclear. Objective This study sought to investigate whether LVSD in patients who are in sinus rhythm (SR) is associated with atrial cellular electrophysiological changes that could predispose to AF. <b>Methods:</b> Right atrial myocytes were obtained from 214 consenting patients in SR who were undergoing cardiac surgery. Action potentials or ion currents were measured using the whole-cell-patch clamp technique. <b>Results:</b> The presence of moderate or severe LVSD was associated with a shortened atrial cellular effective refractory period (ERP) (209 ± 8 ms; 52 cells, 18 patients vs 233 ± 7 ms; 134 cells, 49 patients; P <0.05); confirmed by multiple linear regression analysis. The left ventricular ejection fraction (LVEF) was markedly lower in patients with moderate or severe LVSD (36% ± 4%, n = 15) than in those without LVSD (62% ± 2%, n = 31; P <0.05). In cells from patients with LVEF ≤ 45%, the ERP and action potential duration at 90% repolarization were shorter than in those from patients with LVEF > 45%, by 24% and 18%, respectively. The LVEF and ERP were positively correlated (r = 0.65, P <0.05). The L-type calcium ion current, inward rectifier potassium ion current, and sustained outward ion current were unaffected by LVSD. The transient outward potassium ion current was decreased by 34%, with a positive shift in its activation voltage, and no change in its decay kinetics. <b>Conclusion:</b> LVSD in patients in SR is independently associated with a shortening of the atrial cellular ERP, which may be expected to contribute to a predisposition to AF

    Cellular bases for human atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) causes substantial morbidity and mortality. It may be triggered and sustained by either reentrant or nonreentrant electrical activity. Human atrial cellular refractory period is shortened in chronic AF, likely aiding reentry. The ionic and molecular mechanisms are not fully understood and may include increased inward rectifier K<sup>+</sup> current and altered Ca<sup>2+</sup> handling. Heart failure, a major cause of AF, may involve arrhythmogenic atrial electrical remodeling, but the pattern is unclear in humans. Beta-blocker therapy prolongs atrial cell refractory period; a potentially antiarrhythmic influence, but the ionic and molecular mechanisms are unclear. The search for drugs to suppress AF without causing ventricular arrhythmias has been aided by basic studies of cellular mechanisms of AF. It remains to be seen whether such drugs will improve patient treatment

    Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic beta-adrenoceptor blockade

    Get PDF
    <b>1.</b> 5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT<sub>4</sub> receptors. <b>2.</b> The aims of this study were to examine the effects of 5-HT on the L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with β-adrenoceptor antagonists. <b>3.</b> Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37ºC. <b>4.</b> 5-HT (1 n-10 μM) caused a concentration-dependent increase in <i>I</i><sub>CaL</sub>, which was potentiated in cells from β-blocked (maximum response to 5-HT, E<sub>max</sub>=299±12% increase above control) compared to non-β-blocked patients (E<sub>max</sub>=220±6%, P<0.05), but with no change in either the potency (log EC<sub>50</sub>: -7.09±0.07 vs -7.26±0.06) or Hill coefficient (<i>n</i><sub>H</sub>: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration-response curve. <b>5.</b> 5-HT (10 μM) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from β-blocked patients (of 37±10 ms, i.e. 589±197%) vs non-β-blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD<sub>90</sub> and the ERP were unaffected by 5-HT. <b>6.</b> Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from β-blocked, compared to zero of 16 cells from the non-β-blocked patients (P<0.05). <b>7.</b> In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic β-adrenoceptor blockade was associated with arrhythmic potential

    Two-color holography concept (T-CHI)

    Get PDF
    The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated

    A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems - insights from 3D virtual human atria and torso

    Get PDF
    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms

    Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade

    Get PDF
    Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits
    • …
    corecore