454 research outputs found

    Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling

    Full text link
    The recently discovered exoplanet Gl581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 40 bar. However, we note that as Gl581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic

    Belonging to a different landscape: repurposing nationalist affects

    Get PDF
    This is an article about the embodied, sensual experience of rural landscape as a site where racialized feelings of national belonging get produced. Largely impervious to criticism and reformation by 'thin' legal-political versions of multicultural or cosmopolitan citizenship, it is my suggestion that this racialized belonging is best confronted through the recognition and appreciation of precisely what makes it so compelling. Through an engagement with the theorization of affect in the work of Divya Praful Tolia-Kelly, I consider the resources immanent to the perception of landscapes of national belonging that might be repurposed to unravel that belonging from within. I suggest that forms of environmental consciousness can unpick the mutually reinforcing relationships between nature and nation, opening up opportunities for thinking identity and belonging in different ways, and allowing rural landscapes to become more hospitable places

    The epidemiology of reoperations for orthopaedic trauma.

    Get PDF
    Introduction: The Royal College of Surgeons of England (RCS) has issued guidance regarding the use of reoperation rates in the revalidation of UK-based orthopaedic surgeons. Currently, little has been published concerning acceptable rates of reoperation following primary surgical management of orthopaedic trauma, particularly with reference to revalidation. / Methods: A retrospective review was conducted of patients undergoing clearly defined reoperations following primary surgical management of trauma between 1 January 2010 and 31 December 2011. A full case note review was undertaken to establish the demographics, clinical course and context of reoperation. A review of the imaging was performed to establish whether the procedure performed was in line with accepted trauma practice and whether the technical execution was acceptable. / Results: A total of 3,688 patients underwent primary procedures within the time period studied while 70 (1.90%, 99% CI: 1.39–2.55) required an unplanned reoperation. Thirty-nine (56%) of these patients were male. The mean age of patients was 56 years (range: 18–98 years) and there was a median time to reoperation of 50 days (IQR: 13–154 days). Potentially avoidable reoperations occurred in 41 patients (58.6%, 99% CI: 43.2–72.6). This was largely due to technical errors (40 patients, 57.1%, 99% CI: 41.8–71.3), representing 1.11% (99% CI: 0.73–1.64) of the total trauma workload. Within RCS guidelines, 28-day reoperation rates for hip, wrist and ankle fractures were 1.4% (99% CI: 0.5–3.3), 3.5% (99% CI: 0.8%–12.1) and 1.86% (99% CI: 0.4–6.6) respectively. / Conclusions: We present novel work that has established baseline reoperation rates for index procedures required for revalidation of orthopaedic surgeons

    Demarcating circulation regimes of synchronously rotating terrestrial planets within the habitable zone

    Get PDF
    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model (CAM). The surface temperature contrast between day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen on gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from day to night side, with both the Rossby deformation radius and the Rhines length exceeding planetary radius, which occurs for planets around stars with effective temperatures of 3300 K to 4500 K (rotation period > 20 days). Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, with the Rossby deformation radius is less than planetary radius, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period < 5 days). In between is the Rhines rotation regime, which retains a thermally-direct circulation from day to night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000 K to 3300 K (rotation period ∌ 5 to 20 days), where the Rhines length is greater than planetary radius but the Rossby deformation radius is less than planetary radius. The dynamical state can be observationally inferred from comparing the morphology of the thermal emission phase curves of synchronously rotating planets

    The By-Band study: gastric bypass or adjustable gastric band surgery to treat morbid obesity: study protocol for a multi-centre randomised controlled trial with an internal pilot phase

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordBACKGROUND: The prevalence of severe and complex obesity is increasing worldwide and surgery may offer an effective and lasting treatment. Laparoscopic adjustable gastric band and Roux-en-Y gastric bypass surgery are the two main surgical procedures performed. DESIGN: This open parallel-group randomised controlled trial will compare the effectiveness, cost-effectiveness and acceptability of gastric band (Band) versus gastric bypass (Bypass) in adults with severe and complex obesity. It has an internal pilot phase (in two centres) with integrated qualitative research to establish effective and optimal methods for recruitment. Adults with a body mass index (BMI) of 40 kg/m2 or more, or a BMI of 35 kg/m2 or more and other co-morbidities will be recruited. At the end of the internal pilot the study will expand into more centres if the pre-set progression criteria of numbers and rates of eligible patients screened and randomised are met and if the expected rates of retention and adherence to treatment allocation are achieved. The trial will test the joint hypotheses that Bypass is non-inferior to Band with respect to more than 50% excess weight loss and that Bypass is superior to Band with respect to health related quality of life (HRQOL, EQ-5D) at three years. Secondary outcomes include other weight loss measures, waist circumference and remission/resolution of co-morbidities; generic and symptom-specific HRQOL; nutritional blood test results; resource use; eating behaviours and adverse events. A core outcome set for reporting the results of obesity surgery will be developed and a systematic review of the evidence for sleeve gastrectomy undertaken to inform the main study design. DISCUSSION: By-Band is the first pragmatic study to compare the two most commonly performed bariatric surgical procedures for severe and complex obesity. The design will enable and empower surgeons to learn to recruit and participate in a randomised study. Early evidence shows that timely recruitment is possible. TRIAL REGISTRATION: Current Controlled Trials ISRCTN00786323.National Institute for Health Research Technology Assessment (NIHR HTA) programm

    Climate sensitivity to carbon dioxide and moist greenhouse threshold of earth-like planets under an increasing solar forcing

    Get PDF
    Carbon dioxide is one of the major contributors to the radiative forcing, increasing both the temperature and the humidity of Earth's atmosphere. If the stellar irradiance increases and water becomes abundant in the stratosphere of an Earth-like planet, it will be dissociated and the resultant hydrogen will escape from the atmosphere. This state is called the moist greenhouse threshold (MGT). Using a global climate model (GCM) of intermediate complexity, we explore how to identify this state for different CO2 concentrations and including the radiative effect of atmospheric ozone for the first time. We show that the MGT correlates with the in ection point in the water vapor mixing ratio in the stratosphere and a peak in the climate sensitivity. For CO2 concentrations between 560 and 200 ppm, the MGT is reached at a surface temperature of 320 K. Despite the higher simplicity of our model, our results are consistent with similar simulations without ozone by complex GCMs, suggesting that they are robust indicators of the MGT. We discuss the implications for the inner edge of the habitable zone as well as the water loss timescales for Earth analog planets

    Growth Model Interpretation of Planet Size Distribution

    Full text link
    The radii and orbital periods of 4000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. Yet an important question about the composition of planets ranging from 2 to 4 Earth radii still remains. They may either have a rocky core enveloped in a H2-He gaseous envelope (gas dwarfs) or contain a significant amount of multi-component, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10-15 Earth masses, if half-ice and half-rock by mass, have radii of 2.5 Earth radii, which exactly match the second peak of the exoplanet radius bimodal distribution. Any planet in the 2-4 Earth radii range requires a gas envelope of at most a few mass percentage points, regardless of the core composition. To resolve the ambiguity of internal compositions, we use a growth model and conduct Monte Carlo simulations to demonstrate that many intermediate-size planets are water worlds.Comment: PNAS link: https://www.pnas.org/content/116/20/9723 Complete data and mass-radius tables are available at: https://www.cfa.harvard.edu/~lzeng/planetmodels.htm
    • 

    corecore