710 research outputs found

    OBSANP data acquisition system : operator's manual and system overview

    Get PDF
    On the Ocean Bottom Seismometer Augmentation in the North Pacific Experiment (OBSANP, June-July, 2013, R/V Melville), a VLA and twelve OBSs were deployed to listen to an active acoustic source, a J15-3. This report describes the hardware and software used to control and record the acoustic transmissions from the source. Some significant features of the system are: 1) The system transmits general user-defined source functions, such as M-sequences (.SIO files). 2) In addition to controlling the source waveform, the system also records six real-time channels in binary files with user-selectable lengths: the monitor hydrophone mounted near the source, the power amplifier voltage and current, the depth of the source, Vref signal driving the power amplifiers and an IRIG-B time reference. Files are output in .AUV format with a precision GPSbased time stamp in the file name. 3) The transmission start time along with ADC and DAC sample rates are disciplined to GPS time. 4) A convenient, Labview based, user interface provides real-time source control and monitoring. 5) The software provides parsing and logging of gyro and GPS NMEA sentences. The system, which was based on an earlier system from Scripps MPL, worked well on OBSANP and is available for future projects.Funding was provided by the Office of Naval Research under contract N00014-10-1-0987 and N00014-10-1-0510

    Ocean Bottom Seismometer Augmentation in the North Pacific (OBSANP) - cruise report

    Get PDF
    The Ocean Bottom Seismometer Augmentation in the North Pacific Experiment (OBSANP, June-July, 2013, R/V Melville) addresses the coherence and depth dependence of deep-water ambient noise and signals. During the 2004 NPAL Experiment in the North Pacific Ocean, in addition to predicted ocean acoustic arrivals and deep shadow zone arrivals, we observed "deep seafloor arrivals" (DSFA) that were dominant on the seafloor Ocean Bottom Seismometer (OBS) (at about 5000m depth) but were absent or very weak on the Distributed Vertical Line Array (DVLA) (above 4250m depth). At least a subset of these arrivals correspond to bottomdiffracted surface-reflected (BDSR) paths from an out-of-plane seamount. BDSR arrivals are present throughout the water column, but at depths above the conjugate depth are obscured by ambient noise and PE predicted arrivals. On the 2004 NPAL/LOAPEX experiment BDSR paths yielded the largest amplitude seafloor arrivals for ranges from 500 to 3200km. The OBSANP experiment tests the hypothesis that BDSR paths contribute to the arrival structure on the deep seafloor even at short ranges (from near zero to 4-1/2CZ). The OBSANP cruise had three major research goals: a) identification and analysis of DSFA and BDSR arrivals occurring at short (1/2CZ) ranges in the 50 to 400Hz band, b) analysis of deep sea ambient noise in the band 0.03 to 80Hz, and c) analysis of the frequency dependence of BR and SRBR paths. On OBSANP we deployed a 32 element VLA from 12 to 1000m above the seafloor, eight short-period OBSs and four long-period OBSs and carried out a 15day transmission program using a J15-3 acoustic source.Funding was provided by the Office of Naval Research under contract #'s N00014-10-1-0987 and N00014-10-1-051

    Search for the Rare Decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-, where the X0 is a possible new neutral boson that was reported by the HyperCP experiment with a mass of (214.3 pm 0.5) MeV/c^{2}. We find no evidence for either decay. We obtain upper limits of Br(KL->pi0pi0X0->pi0pi0mu+mu-) pi0pi0mu+mu-) < 9.2 x 10^{-11} at the 90% confidence level. This result rules out the pseudoscalar X0 as an explanation of the HyperCP result under the scenario that the \bar{d}sX0 coupling is completely real

    Anthropology and GIS: Temporal and Spatial Distribution of the Philippine Negrito Groups

    Get PDF
    The Philippine negrito groups comprise a diverse group of populations speaking over 30 different languages, who are spread all over the archipelago, mostly in marginal areas of Luzon Island in the north, the central Visayas islands, and Mindanao in the south. They exhibit physical characteristics that are different from more than 100 Philippine ethnolinguistic groups that are categorized as non-negritos. Given their numbers, it is not surprising that Philippine negritos make up a major category in a number of general ethnographic maps produced since the nineteenth century. Reports from various ethnological surveys during this period, however, have further enriched our understanding regarding the extent and distribution of negrito populations. Using the data contained in these reports, it is possible to plot and create a map showing the historical locations and distribution of negrito groups. Using geographic information systems (GIS), the location and distribution of negrito groups at any given time can be overlaid on historical or current maps. In the present study, a GIS layer was compiled and extracted from the 2000 Philippine Census of population at the village level and overlaid on existing maps of the Philippines. The maps that were generated from this project will complement ongoing anthropological and genetic studies of negrito groups that inhabit different locations within the Philippine archipelago

    Search for the Rare Decay K_{L}\to\pi^{0}\pi^{0}\gamma

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decay KL→π0π0γK_{L}\to\pi^{0}\pi^{0}\gamma via the topology KL→π0πD0γK_{L}\to\pi^{0}\pi^{0}_D\gamma (where πD0→γe+e−\pi^0_D\to\gamma e^+e^-). Due to Bose statistics of the π0\pi^0 pair and the real nature of the photon, the KL→π0π0γK_{L}\to\pi^{0}\pi^{0}\gamma decay is restricted to proceed at lowest order by the CP conserving direct emission (DE) of an E2 electric quadrupole photon. The rate of this decay is interesting theoretically since chiral perturbation theory predicts that this process vanishes at level O(p4)O(p^4). Therefore, this mode probes chiral perturbation theory at O(p6)O(p^6). In this paper we report a determination of an upper limit of 2.43×10−72.43\times 10^{-7} (90% CL) for KL→π0π0γK_{L}\to\pi^{0}\pi^{0}\gamma. This is approximately a factor of 20 lower than previous results.Comment: six pages and six figures in the submission. Reformatted for Physics Review
    • …
    corecore