109 research outputs found

    TanDEM-X High Resolution DEMs and Their Applications to Flow Modeling

    Get PDF
    Lava flow modeling can be a powerful tool in hazard assessments; however, the ability to produce accurate models is usually limited by a lack of high resolution, up-to-date Digital Elevation Models (DEMs). This is especially obvious in places such as Kilauea Volcano (Hawaii), where active lava flows frequently alter the terrain. In this study, we use a new technique to create high resolution DEMs on Kilauea using synthetic aperture radar (SAR) data from the TanDEM-X (TDX) satellite. We convert raw TDX SAR data into a geocoded DEM using GAMMA software [Werner et al., 2000]. This process can be completed in several hours and permits creation of updated DEMs as soon as new TDX data are available. To test the DEMs, we use the Harris and Rowland [2001] FLOWGO lava flow model combined with the Favalli et al. [2005] DOWNFLOW model to simulate the 3-15 August 2011 eruption on Kilauea\u27s East Rift Zone. Results were compared with simulations using the older, lower resolution 2000 SRTM DEM of Hawaii. Effusion rates used in the model are derived from MODIS thermal infrared satellite imagery. FLOWGO simulations using the TDX DEM produced a single flow line that matched the August 2011 flow almost perfectly, but could not recreate the entire flow field due to the relatively high DEM noise level. The issues with short model flow lengths can be resolved by filtering noise from the DEM. Model simulations using the outdated SRTM DEM produced a flow field that followed a different trajectory to that observed. Numerous lava flows have been emplaced at Kilauea since the creation of the SRTM DEM, leading the model to project flow lines in areas that have since been covered by fresh lava flows. These results show that DEMs can quickly become outdated on active volcanoes, but our new technique offers the potential to produce accurate, updated DEMs for modeling lava flow hazards

    A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    Get PDF
    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Klauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Klauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Klauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawaii County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active

    Initial Characterization of the FlgE Hook High Molecular Weight Complex of

    Get PDF
    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991–2011

    No full text
    The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a “nominal” extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution WorldView-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument

    A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts

    No full text
    © 2014. Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano\u27s (Hawai\u27i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow\u27s emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea\u27s summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai\u27i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active
    corecore