1,891 research outputs found

    AB Initio Characterization of MgCCH, MgCCH(+), and MgC2, and Pathways to their Formation in the Interstellar Medium

    Get PDF
    A study of Mg-bearing compounds has been performed in order to determine molecular properties which are critical for planning new astronomical searches and laboratory studies. The primary focus of the work is on MgCCH, MgCCH(+), and the isomers of MgC2. Only MgCCH has been identified in laboratory studies. Additional calculations have been carried out on MgH, MgNC, MgCN, and their cations in an effort to evaluate pathways to the formation of MgCCH and MgCCH(+) in the InterStellar Medium (ISM) or in circumstellar envelopes. Correlated ab initio methods and correlation-consistent basis sets have been employed. Properties including structures, rotational constants, dipole moments, and harmonic frequencies are reported. A transition state between linear MgCC and cyclic MgC2 has been characterized and was found to yield a minimal barrier (approx. 0.5 kcal/mole), indicating easy interconversion to the cyclic form. Direct reactions in the ISM between Mg or Mg(+) and HCCH are precluded by energetic considerations, but a number of ion- molecule or neutral-neutral exchange reactions between CCH and various Mg-containing species offer plausible pathways to MgCCH or MgCCH(+). Weakly bound MgH may react with CCH to form MgCCH, but MgH has not been detected. Both MgNC and MgCN have been observed, but reactions with CCH are slightly endothermic by 1-3 kcal/mole. Although MgH(+), MgNC(+), and MgCN(+) have not been detected, their reactions with CCH to form MgCCH(+) are all exothermic. With only a small barrier separating linear MgCC and cyclic MgC2, the dissociative recombination of MgCCH(+) with an electron is expected to yield cyclic MgC2, and regenerate Mg and CCH. New astronomical searches for MgCCH, MgCCH(+), cyclic MgC2, MgNC(+), and MgCN(+) will provide further insight into organo-magnesium astrochemistry

    A Correlated Ab Initio Study of Linear Carbon-Chain Radicals C(sub n)H (n=2-7)

    Get PDF
    Linear carbon-chain radicals C(sub n) H for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2Sigma(+) to 2Pi as the chain is extended. For C4H, the 2Sigma(+) state was found to lie only 72 cm(exp -1) below the 2Pi state in the estimated complete basis set limit for valence correlation. The C2H(-) and C3H(-) anions have also been characterized

    Astrometric Detection of Double Gravitational Microlensing Events

    Get PDF
    If a gravitational microlensing event is caused by a widely separated binary lens and the source approaches both lens components, the source flux is successively magnified by the individual lenses: double microlensing events. If events are observed astrometrically, double lensing events are expected to occur with an increased frequency due to the long range astrometric effect of the companion. We find that although the trajectory of the source star image centroid shifts of an astrometric double lensing event has a distorted shape from both of the elliptical ones induced by the individual single lens components, event duplication can be readily identified by the characteristic loop in the trajectory formed during the source's passage close to the companion. We determine and compare the probabilities of detecting double lensing events from both photometric and astrometric lensing observations by deriving analytic expressions for the relations between binary lensing parameters to become double lensing events. From this determination, we find that for a given set of the binary separation and the mass ratio the astrometric probability is roughly an order higher than the photometric probability. Therefore, we predict that a significant fraction of events that will be followed up by using future high precision interferometeric instruments will be identified as double lensing events.Comment: total 6 pages, including 4 figures and no table, ApJ, submitte

    Reduction of Activation Energy Barrier of Stone-Wales Transformation in Endohedral Metallofullerenes

    Full text link
    We examine effects of encapsulated metal atoms inside a C60_{60} molecule on the activation energy barrier to the Stone-Wales transformation using {\it ab initio} calculations. The encapsulated metal atoms we study are K, Ca and La which nominally donate one, two and three electrons to the C60_{60} cage, respectively. We find that isomerization of the endohedral metallofullerene via the Stone-Wales transformation can occur more easily than that of the empty fullerene owing to the charge transfer. When K, Ca and La atoms are encapsulated inside the fullerene, the activation energy barriers are lowered by 0.30, 0.55 and 0.80 eV, respectively compared with that of the empty C60_{60} (7.16 eV). The lower activation energy barrier of the Stone-Wales transformation implies the higher probability of isomerization and coalescence of metallofullerenes, which require a series of Stone-Wales transformations.Comment: 13 pages, 3 figures, 1 tabl

    Bibliometric Analysis of Distributed Generation

    Get PDF
    This paper describes the application of data mining techniques for eludicating patterns and trends in technological innovation. Specifically, we focus on the use of bibliometric methods, viz techniques which focus on trends in the publication of text documents rather than the content of these documents. Of particular interest is the relationship between publication patterns, as characterized by term occurrence frequencies, and the underlying technological trends and developments which drive these trends. To focus the discussions and to provide a concrete example of their applicability, a detailed case study focussing on research in the area of Distributed Generation (DG) is also presented; however, the techniques and general approach devised here will be applicable to a broad range of industries, situations, and locations. Our results are promising and indicate that interesting information and conclusions can be derived from this line of analysis. The results obtained using data extraction techniques highlight and present the evolution of DG-related technology focus areas, and their relative importance within this field

    Towards better understanding Cybersecurity: Or are "Cyberspace" and "Cyber Space" the same?

    Get PDF
    Although there are many technology challenges and approaches to attaining cybersecurity, human actions (or inactions) also often pose large risks. There are many reasons, but one problem is whether we all “see the world” the same way. That is, what does “cybersecurity” actually mean – as well as the many related concepts, such as “cyberthreat,” “cybercrime,” etc. Although dictionaries, glossaries, and other sources tell you what words/phrases are supposed to mean (somewhat complicated by the fact that they often contradict each other), they do not tell you how people are actually using them. If we are to have an effective solution, it is important that all the parties understand each other – or, at least, understand that there are different perspectives. For the purpose of this paper and to demonstrate our methodology, we consider the case of the words, “cyberspace” and “cyber space.” When we started, we assumed that “cyberspace” and “cyber space” were essentially the same word with just a minor variation in punctuation (i.e., the space, or lack thereof, between “cyber” and “space”) and that the choice of the punctuation was a rather random occurrence. With that assumption in mind, we would expect that the usage of these words (as determined by the taxonomies that would be constructed by our algorithms) would be basically the same. As it turned out, they were quite different, both in overall shape and groupings within the taxonomy. Since the overall field of cybersecurity is so new, understanding the field and how people think about it (as evidenced by their actual usage of terminology, and how usage changes over time) is an important goal. Our approach helps to illuminate these understandings

    Exploring Terms and Taxonomies Relating to the Cyber International Relations Research Field: or are "Cyberspace" and "Cyber Space" the same?

    Get PDF
    This project has at least two facets to it: (1) advancing the algorithms in the sub-field of bibliometrics often referred to as "text mining" whereby hundreds of thousands of documents (such as journal articles) are scanned and relationships amongst words and phrases are established and (2) applying these tools in support of the Explorations in Cyber International Relations (ECIR) research effort. In international relations, it is important that all the parties understand each other. Although dictionaries, glossaries, and other sources tell you what words/phrases are supposed to mean (somewhat complicated by the fact that they often contradict each other), they do not tell you how people are actually using them. As an example, when we started, we assumed that "cyberspace" and "cyber space" were essentially the same word with just a minor variation in punctuation (i.e., the space, or lack thereof, between "cyber" and "space") and that the choice of the punctuation was a rather random occurrence. With that assumption in mind, we would expect that the taxonomies that would be constructed by our algorithms using "cyberspace" and "cyber space" as seed terms would be basically the same. As it turned out, they were quite different, both in overall shape and groupings within the taxonomy. Since the overall field of cyber international relations is so new, understanding the field and how people think about (as evidenced by their actual usage of terminology, and how usage changes over time) is an important goal as part of the overall ECIR project

    FORMATION OF THE ALMA MOLECULE HOCH2CN AND RELATED SPECIES FROM THE REACTION OF C+ WITH HCN AND HNC IN ICY GRAIN MANTLES

    Get PDF
    Density functional theory cluster calculations indicate that the intermediate HOCHNC readily forms when \chem{C^+} reacts with HCN embedded in the surface of an icy grain mantle. Subsequent H addition to HOCHNC yields the iscyano compound \chem{HOCH_2NC}. There is enough energy from the H addition for \chem{HOCH_2NC} to isomerize to \chem{HOCH_2CN} (glycolonitrile), an important prebiotic molecule that was recently detected with ALMA observations toward the solar-type protostellar source IRAS 16293-2422 B by Zeng et al. [MNRAS 2019, 484, L43]. It was found that H can also add to HOCHNC to form HOCHNCH without a barrier. The analogous reactions of \chem{C^+} with HNC in ice will also be discussed. Vibrational spectra of the various ice-bound reactants, intermediates, and products will be presented. The calculations were performed with B3LYP using aug-cc-pVDZ sets on C, N, and O and cc-pVDZ sets on H

    Astrochemistry lecture and laboratory courses at the University of Illinois: Applied spectroscopy

    Get PDF
    The Department of Chemistry at the University of Illinois at Urbana-Champaign offers two courses in astrochemistry, one lecture (Chem 450) and one laboratory (Chem 451). Both courses present the opportunity for advanced undergraduate and graduate students to learn about various spectroscopic concepts as they are applied toward an exotic subject, astrochemistry. In the lecture course, each student devotes a substantial fraction of the course work to one of the known astromolecules, building a wiki page for it during the semester, presenting a brief oral description about it in class, and then finally writing a paper about it. The course covers electronic, vibrational, and rotational spectroscopy, along with Einstein coefficients, line widths, and the interpretation of actual astronomical spectra. It also covers relevant reactions and reaction networks. Students learn to use pgopher for modeling rotational spectra. The lab course focuses on the methylidyne radical (CH). It begins with its chemistry and spectroscopy and then moves on to laboratory study of its electronic spectrum as observed in a butane flame and then collected with the university's 12" f/15 Brashear refracting telescope in the campus observatory built in 1896. Students learn to use IGOR to reduce CCD data

    A Unified Approach for Taxonomy-based Technology Forecasting

    Get PDF
    For decision makers and researchers working in a technical domain, understanding the state of their area of interest is of the highest importance. For this reason, we consider in this chapter, a novel framework for Web-based technology forecasting using bibliometrics (i.e. the analysis of information from trends and patterns of scientific publications). The proposed framework consists of a few conceptual stages based on a data acquisition process from bibliographic online repositories: extraction of domainrelevant keywords, the generation of taxonomy of the research field of interests and the development of early growth indicators which helps to find interesting technologies in their first phase of development. To provide a concrete application domain for developing and testing our tools, we conducted a case study in the field of renewable energy and in particular one of its subfields: Waste-to-Energy (W2E). The results on this particular research domain confirm the benefit of our approach
    corecore