NINCL

W. Dirick

0 2 4 2 0 0 3

16

NASA-UK-204013

Reprinted from

CHEMICAL PHYSICS LETTERS

Chemical Physics Letters 244 (1995) 45-52

A correlated ab initio study of linear carbon-chain radicals C_nH (n = 2-7)

David E. Woon¹

Molecular Research Institute, 845 Page Mill Road, Palo Alto, CA 94304, USA Received 12 June 1995; in final form 24 July 1995

EDITORS; A.D. BUCKINGHAM, D.A. KING, A.H, ZEWAIL Assistant Editor: Dr. R. Kobayashi, Cambridge, UK

Australia B.J. ORR, Sydney

Canada J.W. HEPBURN, Waterloo C.A. McDOWELL, Vancouver W. SIEBRAND, Ottawa

Czech Republic Z. HERMAN, Prague

Denmark J.K. NØRSKOV, Lyngby

France J.-L. MARTIN, Palaiseau J.L. RIVAIL, Vandœuvre lès Nancy J. SIMON, Paris

L.S. CEDERBAUM, Heidelberg G. ERTL, Berlin D. FREUDE, Leipzig G. GERBER, Würzburg G.L. HOFACKER, Garching D.M. KOLB. Ulm J. MANZ. Berlin M. PARRINELLO, Stuttgart S.D. PEYERIMHOFF, Bonn R. SCHINKE, Göttingen E.W. SCHLAG, Garching J. TROE, Göttingen H. WALTHER, Garching H.C. WOLF, Stuttgart

India C.N.R. RAO, Bangalore

Israel J. JORTNER, Tel Aviv R.D. LEVINE, Jerusalem

Italy V. AQUILANTI, Perugia E. CLEMENTI, Cagliari

B. SOEP, Orsay Germany V.E. BONDYBEY, Garching

Sweden Switzerland R.R. ERNST, Zurich

Taiwan, ROC

A.J. HOFF, Leiden A.W. KLEYN, Amsterdam

United Kingdom M.N.R. ASHFOLD, Bristol G.S. BEDDARD, Manchester M.S. CHILD, Oxford D.C. CLARY, Cambridge

FOUNDING EDITORS: G.J. HOYTINK, L. JANSEN FORMER EDITORS: R.B. BERNSTEIN, D.A. SHIRLEY, R.N. ZARE

ADVISORY EDITORIAL BOARD

Japan H. HAMAGUCHI, Tokyo M. ITO, Okazaki T. KOBAYASHI, Tokyo K. KUCHITSU, Sakado H. NAKATSUJI, Kyoto K. TANAKA, Tokyo K. YOSHIHARA, Okazaki

People's Republic of China C.-H. ZHANG, Beijing

Poland Z.R. GRABOWSKI, Warsaw

Russian Federation A.L. BUCHACHENKO, Moscow V.S. LETOKHOV, Troitzk Yu.N. MOLIN, Novosibirsk

Spain A. GONZÁLEZ UREÑA, Madrid

S. ANDERSSON, Goteborg P.E.M. SIEGBAHN, Stockholm V. SUNDSTRÖM, Lund

C.K. JØRGENSEN, Geneva M. QUACK, Zurich

Y.T. LEE, Taipei

The Netherlands D.A. WIERSMA, Groningen

R.H. FRIEND, Cambridge N.C. HANDY, Cambridge A.C. LEGON, Exeter R.M. LYNDEN-BELL, Belfast J.P. SIMONS, Oxford I.W.M. SMITH, Birmingham B.A. THRUSH, Cambridge

USA

P. AVOURIS, Yorktown Heights, NY A.J. BARD, Austin, TX A.W. CASTLEMAN Jr., University Park, PA Y. CHABAL, Murray Hill, NJ D. CHANDLER, Berkeley, CA F.F. CRIM, Madison, WI A. DALGARNO, Cambridge, MA P.M. DEHMER, Argonne, IL C.E. DYKSTRA, Indianapolis, IN K.B. EISENTHAL, New York, NY M.D. FAYER, Stanford, CA R.W. FIELD, Cambridge, MA G.R. FLEMING, Chicago, IL D.W. GOODMAN, College Station, NY R.M. HOCHSTRASSER, Philadelphia, PA J.L. KINSEY, Houston, TX S.R. LEONE, Boulder, CO C.M. LIEBER, Cambridge, MA W.C. LINEBERGER, Boulder, CO B.V. McKOY, Pasadena, CA W.H. MILLER, Berkeley, CA K. MOROKUMA, Atlanta, GA S. MUKAMEL, Rochester, NY A. PINES, Berkeley, CA A.R. RAVISHANKARA, Boulder, CO S.A. RICE, Chicago, IL P.J. ROSSKY, Austin, TX R.J. SAYKALLY, Berkeley, CA H.F. SCHAEFER III, Athens, GA G.C. SCHATZ, Evanston, IL R.E. SMALLEY, Houston, TX W.C. STWALLEY, Storrs, CT D.G. TRUHLAR, Minneapolis, MN J.J. VALENTINI, New York, NY C. WITTIG, Los Angeles, CA P.G. WOLYNES, Urbana, IL R.N. ZARE, Stanford, CA

Contributions should, preferably, be sent to a member of the Advisory Editorial Board (addresses are given in the first issue of each volume) who is familiar with the research reported, or to one of the Editors:

> A.D. BUCKINGHAM D.A. KING Editor of Chemical Physics Letters University Chemical Laboratory Lensfield Road Cambridge CB2 1EW, UK FAX 44-1223-336362

A.H. ZEWAIL Editor of Chemical Physics Letters A.A. Noyes Laboratory of Chemical Physics California Institute of Technology Mail Code 127-72 Pasadena, CA 91125, USA FAX 1-818-4050454

Important: manuscripts should normally not exceed 2500 words, the abstract should not exceed 100 words and there should be no more than 5 figures. (For details, see the instructions to authors, to be found on the last pages of each volume.)

After acceptance of the paper for publication, all further correspondence should be sent to the publishers (Ms. S.A. Hallink, Editorial Department, Chemistry & Chemical Engineering Department, P.O. Box 330, 1000 AH Amsterdam, The Netherlands; telephone 31-20-4852664, FAX 31-20-4852459, telex 10704 espom nl; electronic mail X400: C=NL; A=400NET; P=SURF; O=ELSEVIER; S=HALLINK, I=S or RFC822: S. HALLINK@ELSEVIER.NL).

Chemical Physics Letters (ISSN 0009-2614). For 1995, volumes 229-245 are scheduled for publication. Subscription prices are available upon request from the publisher. Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by surface mail except to the following countries where air delivery via SAL is ensured: Argentina, Australia, Brazil, Canada, Hong Kong, India, Israel, Japan, Malaysia, Mexico, New Zealand, Pakistan, PR China, Singapore, South Africa, South Korea, Taiwan, Thailand, USA. For all other countries airmail rates are available upon request. Claims for missing issues must be made within six months of our publication (mailing) date. Please address all your requests regarding orders and subscription queries to: Elsevier Science B.V., Journal Department, P.O. Box 211, 1000 AE Amsterdam, The Netherlands. Tel.: 31-20-4853642, fax: 31-20-4853598.

US mailing notice - Chemical Physics Letters (ISSN 0009-2614) is published weekly by Elsevier Science B.V., Molenwerf 1, P.O. Box 211, 1000 AE Amsterdam. Annual subscription price in the USA US\$ 5279.00, including air speed delivery, valid in North, Central and South America only. Second class postage paid at Jamaica, NY 11431. USA POSTMASTERS: Send address changes to Chemical Physics Letters, Publications Expediting, Inc., 200 Meacham Avenue, Elmont, NY 11003. Airfreight and mailing in the USA by Publication Expediting.

Printed in The Netherlands

Published weekly

Library of Congress Catalog Card Number 68-26532

29 September 1995

Chemical Physics Letters 244 (1995) 45-52

A correlated ab initio study of linear carbon-chain radicals C_nH (n = 2-7)

David E. Woon¹

Molecular Research Institute, 845 Page Mill Road, Palo Alto, CA 94304, USA

Received 12 June 1995; in final form 24 July 1995

Abstract

Linear carbon-chain radicals C_nH for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-*n* series changes from ${}^{2}\Sigma^{+}$ to ${}^{2}\Pi$ as the chain is extended. For C_4H , the ${}^{2}\Sigma^{+}$ state was found to lie only 72 cm⁻¹ below the ${}^{2}\Pi$ state in the estimated complete basis set limit for valence correlation. The C_2H^{-} and C_3H^{-} anions have also been characterized.

1. Introduction

The acetylenic linear carbon-chain radicals C_nH for n = 2 to 6 have all been detected in the interstellar medium (see citations in Refs. [1–3]), with C_2H particularly plentiful. As reactive precursors in chain-lengthening astrochemical processes, they and the related cyanopolyyne C_nN radicals play important roles in the evolution of molecular species within dense interstellar and circumstellar molecular clouds. The members of the odd-*n* series all have ² Π ground states with characteristically high dipole moments, which make them exceptional candidates for astronomical detection. For the even-*n* series, there are low-lying states of ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ symmetries, where the ${}^{2}\Sigma^{+}$ state has a much smaller dipole moment than the ${}^{2}\Pi$ state, though large enough to be detected. The ordering of the states unquestionably changes as the length of the chain grows. There is no dispute that the ground state of C_2H (ethynyl) is a ${}^{2}\Sigma^{+}$, while that of C₆H (hexatriynyl) is ${}^{2}\Pi$. However, the ground state of the C₄H butadiynyl radical lies near the point where the ordering of the two states reverses. The experimental spectra of C₄H are consistent with a ${}^{2}\Sigma^{+}$ ground state [4-7], but the state separation has not been measured. Calculations by Horn and Botschwina included in Ref. [7] found the ${}^{2}\Sigma^{+}$ state to be more stable, while Natterer and Koch [8] asserted that the ground state is of ${}^{2}\Pi$ symmetry. Their work, however, left some points unsettled. Thus one goal of the present study is to reexamine this issue in order to ascertain if the proper ground state assignment has been made for C₄H, as well as to compute accurate values for the state separations of C_2H and C_6H .

CHEMICAL PHYSICS LETTERS

Although each of the $C_n H$ species containing up to ten carbon atoms has been the focus of previous ab initio studies, there have been only three efforts to

¹ E-mail: woon@hecla.molres.org

^{0009-2614/95/\$09.50 © 1995} Elsevier Science B.V. All rights reserved SSDI 0009-2614(95)00906-X

characterize all or part of the sequence at the same level of theoretical treatment. Cooper and Murphy [1] reported the results of RHF calculations on the odd-n C₃H, C₅H, and C₇H species using very limited basis sets. Subsequently, Pauzat et al. [3] studied both even-and odd-n radicals from C₂H through $C_{10}H$ at the UHF/3-21G and UHF/SVP levels. Finally, the work by Natterer and Koch [8] mentioned above considered the even-n radicals C₂H, C₄H and C₆H. Only the last paper employed correlated methods. The complete series has not been systematically investigated with correlated methods and robust basis sets. Therefore, the second goal of this work is to study C₂H through C₇H with stateof-the-art ab initio theory and substantial basis sets in order to predict molecular properties including structures, rotational constants, and dipole moments.

Finally, the electron affinities (EA) of C_2H and C_3H , the two C_nH species for which experimental values have been measured, were also investigated in this work. The C_2H^- and C_3H^- anions are of potential interest in astrochemistry due to their stability and the well-known importance of ion-molecule reactions under astrophysical conditions. Neither EA has received much theoretical attention. In particular, C_3H^- has only been studied in one previous effort [9], which utilized a moderately-sized basis set (6-31 + + G^{**}) and limited recovery of correlation (CID) but did not report the EA. It did, however, provide the first evidence that the geometry of the ground state of C_3H^- is not linear and that there is also an intriguing bound excited state. By using larger basis sets and a correlation method [RCCSD(T)] that performs well at describing EAs, we can improve upon earlier predictions.

2. Methodology

The correlation consistent basis sets (cc-pVXZ) of Dunning and co-workers [10-12] have been utilized in this work. An extensive series of benchmark calculations [13-18] on small systems have amply demonstrated the well behaved convergence associated with the use of these basis sets, which makes it possible to estimate complete basis set (CBS) limits for various properties when sets of at least double through quadruple zeta quality can be used. Even in cases where the larger sets cannot be used, there are systematic trends that may be exploited in order to improve the accuracy of the ab initio predictions.

The primary correlation method employed in this study was the restricted coupled-cluster method RCCSD(T) [19] as implemented in the MOLPRO suite of codes². An RHF zeroth-order wave function was used. For the species with $^{2}\Pi$ states, the two degenerate components were state-averaged to provide orbitals with the proper symmetry. In order to evaluate the performance of RCCSD(T) for describing the ${}^{2}\Sigma^{+} - {}^{2}\Pi$ state separations of the even-*n* series, internally contracted multireference configuration interaction (CMRCI) calculations [20] were carried out for C₂H using a complete active space self-consistent field (CASSCF) reference function [21]. The multireference Davidson correction (CMRCI + Q) was also applied [22]. Although most of the correlation calculations were restricted to the valence electrons, the structures of C₂H and C₃H were reoptimized with the new cc-pCVTZ set for carbon [12], which includes additional optimized functions located in the core and core-valence region.

Dipole moments at the RCCSD(T) level were determined using the finite field approximation. The basis sets were enlarged to include extra diffuse functions by using the aug-cc-pVXZ sets [11] of double or triple zeta quality.

3. Structures, rotational constants, and dipole moments of C_nH species

Optimized equilibrium bond lengths and the associated rotational constants for both even-and odd-n C_n H radicals determined at the RCCSD(T) level of theory are reported in tblr1. The largest valence sets used for each species were dictated by available computational resources. The cc-pVQZ sets were used for the full geometry optimizations of C₂H and C₃H and for single-point calculations on C₄H. The

² MOLPRO is a package of ab initio programs written by H.-J. Werner and P.J. Knowles with contributions by J. Almlöf, R.D. Amos, M.J.O. Deegan, S.T. Elbert, C. Hampel, W. Meyer, K.A. Peterson, R.M. Pitzer, A.J. Stone and P.R. Taylor.

be used for optimizing C_7H . One benefit in examining a large number of species simultaneously is that trends may emerge that are not apparent when examining individual molecules. Here there are a total of 9 C-H and 30 C-C bonds. The latter vary in character from single to triple bonds. When the basis set is improved from cc-pVDZ to cc-pVTZ quality, both C-H and C-C bond lengths decrease, but the effect is remarkably uniform not just for very different C-C bonds, but also for C-C versus C-H bonds. The average ratio $(r_e(\text{cc-pVTZ})/r_e(\text{cc-pVDZ}))$ for 6 C-H bonds is 0.9855, but the high-low range is only 0.9853 to 0.9856. The range of 0.9838 to 0.9871 for 13 C-C bonds is larger, but the average is again 0.9855. The predictive power of this parameter for estimating bond lengths at the cc-pVTZ level may be gauged by

considering an example. For C_3H (²II), the average parameter of 0.9855 produces bond lengths that yield $B_e = 11.030$ GHz, which is essentially the same as the optimized cc-pVTZ result of 11.028 GHz. If the low and high extremes are used, they lead to respective B_e values of 11.065 and 10.995 GHz, an interval of only 70 MHz. The average scaling parameter was use to estimate bond lengths for single point cc-pVTZ calculations for the two states of C_6H in order to produce a more accurate prediction for the state separation (see Section 4).

For the improvement from cc-pVTZ to cc-pVQZ quality, there are only 3 C-H and 4 C-C bond lengths upon which to base scaling factors. Here the average C-H and C-C scaling factors (r_e (ccpVQZ)/ r_e (cc-pVTZ)) are somewhat different, 0.9998 for C-H bonds and 0.9970 for C-C bonds. The variation for C-H bonds is again very small, and the range for C-C bonds is only 0.9967 to 0.9978. The

Table 1

Bond lengths r_e and rotational constants B_e for the ${}^2\Sigma^+$ and ${}^2\Pi$ states of C_nH (n = 2-7) at the RCCSD(T) level of theory

Species	State	Basis set	r _e (Å)							B_{c} (GHz)	<i>B</i> ₀ (GHz)
			$H-C_1$	C ₁ -C ₂	C ₂ -C ₃	C ₃ -C ₄	C ₄ -C ₅	C ₅ -C ₆	C ₆ -C ₇	calc.	exp.
C ₂ H	$2\Sigma^+$	cc-pVDZ	1.0801	1.2348						42.341	
		cc-pVTZ	1.0645	1.2148						43.723	
		cc-pVOZ	1.0644	1,2108						43.972	
		est. CBS limit	1.0644	1.2088						44.096	43.675
	$^{2}\Pi$	cc-pVDZ	1.0876	1.3154						37.917	
		cc-pVTZ	1.0716	1.2953						39.101	
		cc-pVQZ	1.0712	1.2910						39.329	
		est. CBS limit	1.0712	1.2888						39.443	
C ₂ H	² П	cc-pVDZ	1.0813	1.2661	1.3670					10.712	
_ ,		cc-pVTZ	1.0654	1.2484	1.3468					11.028	
		cc-pVQZ	1.0653	1.2456	1.3426					11.085	
		est. CBS limit	1.0653	1.2443	1.3405					11.112	11.186
C₄H	${}^{2}\Sigma^{+}$	cc-pVDZ	1.0793	1.2334	1.3947	1.2396				4.578	
		cc-pVTZ	1.0635	1.2146	1.3787	1.2200				4.708	
		cc-pVQZ ^a	1.0633	1.2104	1.3744	1.2157				4.738	4.759
	² []	cc-pVDZ	1.0805	1.2470	1.3621	1.3179				4.484	
		cc-pVTZ	1.0648	1.2286	1.3444	1.2984				4.612	
		cc-pVOZ ^a	1.0645	1.2244	1.3402	1.2942				4.642	
C-H	$^{2}\Pi$	cc-pVDZ	1.0805	1.2457	1.3567	1.2899	1.3371			2.302	
- 3		cc-pVTZ	1.0648	1.2276	1.3392	1.2727	1.3176			2.366	2.395
C/H	${}^{2}\Sigma^{+}$	cc-pVDZ	1.0796	1.2349	1.3881	1.2397	1.3880	1.2411		1.339	
- 0	_	cc-pVTZ ^a	1.0639	1.2171	1.3680	1.2217	1.3679	1.2231		1.379	
	² П	cc-pVDZ	1.0804	1.2389	1.3734	1.2598	1.3462	1.3185		1.332	
		cc-pVTZ ^a	1.0648	1.2210	1.3535	1.2415	1.3267	1.2994		1.371	1.386
C ₇ H	² П	cc-pVDZ	1.0804	1.2395	1.3724	1.2608	1.3357	1.2997	1.3288	0.842	

^a Single-point calculation at geometry derived from smaller set(s) (see text).

two average scaling factors were used to estimate bond lengths in order to run the cc-pVQZ calculations for C_4H that appear in Table 1 and play an important role in Section 4.

The effect of including core and core-valence correlation can be approximated by running all-electron calculations at the cc-pCVTZ level and observing the changes in bond lengths with respect to valence-electron calculations at the cc-pVTZ level. The structures of C_2H (both states) and C_3H were therefore reoptimized. The C-H bonds are essentially unchanged, but the C-C bonds decrease by an average of 0.0034 Å, which is consistent with shifts observed in C-C bonds in C_2 [23], C_3 [24] and MgCCH [25].

Rotational constants are the principle point of comparison between the present calculations and experimental or astronomical data. Measured B_0 values are indicated in Table 1, as collected by Pauzat et al. [3]. Passing over C_2H for the moment, the agreement is very good between the RCCSD(T) values (valence correlation, CBS limits or largest basis set result) and the empirical data for species where there is no dispute over the ground state assignment. The computed B_e values for C₃H, C₅H and C₆H fall only 74, 29 and 57 MHz below the measurements, where some adjustment for zero-point vibrational motion and other theoretical approximations should be expected. The estimated cc-pVQZ geometries for C_4H yield B_c values that fall 21 and 117 MHz below the result of Gottlieb et al. [5] for the ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ states, respectively, which offers tentative support for a ${}^{2}\Sigma^{+}$ ground state. When core-valence contractions of 0.0034 Å per C-C bond are added to the valence CBS limits or best basis set results noted above, the values of B_{e} become 11.165, 4.763, 2.379 and 1.384 GHz for the ground states of C_3H to C_6H , respectively. The respective errors of 21, 4, 16 and 2 MHz are significantly reduced from the valence-only results.

Theory overestimates B_e for C₂H by more than 400 MHz. The RCCSD(T) results were tested against the CMRCI method. The CMRCI estimated CBS limits for the ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ states were found to be 44.003 and 39.372 GHz, respectively, which differ from RCCSD(T) by 93 and 71 MHz. The behavior of the RCCSD(T) method is not anomalous. The large difference between theory and experiment may

Table 2											
Dipole moments	μ_{ϵ}	of	the	$^{2}\Sigma^{+}$	and	² П	states	of	C"H	at	the
RCCSD(T) level											

Species	Basis set		μ _e (D)	
	С	н	$2\Sigma^{+}$	² П
C ₂ H	cc-pVDZ	cc-pVDZ	0.766	2.829
	aug-cc-pVDZ	cc-pVDZ	0.772	2.965
	aug-cc-pVDZ	aug-cc-pVDZ	0.774	2.968
	cc-pVTZ	cc-pVTZ	0.774	2.960
	aug-cc-pVTZ	cc-pVTZ	0.771	3.006
	aug-cc-pVTZ	aug-cc-pVTZ	0.769	3.004
С3Н	aug-cc-pVDZ	cc-pVDZ	_	3.512
	aug-cc-pVTZ	cc-pVTZ	-	3.551
C₄H	aug-cc-pVDZ	cc-pVDZ	0.870	4.404
C ₅ H	aug-cc-pVDZ	cc-pVDZ	_	4.881
C ₆ H	aug-cc-pVDZ	cc-pVDZ	0.979	5.536
С ₇ Н	aug-cc-pVDZ	cc-pVDZ	_	5.945

be due to the vibration effects incorporated in the latter value. It is noteworthy that B_e is very sensitive to the C-C bond length: a change of only 0.001 Å shifts B_e by 60 MHz. In fact, including core and core-valence correlation increases the error by more than 200 MHz.

The RCCSD(T) dipole moments μ_e of C_n H radicals are given in Table 2. It is evident from C_2H that μ_{e} is significantly changed by adding diffuse functions to C, but not to H. Therefore, this pairing of the aug-cc-pVXZ set for C with the standard cc-pVXZ set for H was used for the larger species as well. Furthermore, the results for C_2H and C_3H indicate that there is little to be gained by improving from double to triple zeta quality sets. The impact is negligible for the ${}^{2}\Sigma^{+}$ state of $C_{2}H$ and only about 0.05 D for the ${}^{2}\Pi$ states of $C_{2}H$ and $C_{3}H$. The correlated RCCSD(T) values are expected to be somewhat more reliable than the RHF or UHF values reported in previous work [1,3]; unfortunately, there are no experimental values for comparison. It is of interest to note that although the dipole moments of both states increase with chain length, the magnitude doubles for the ${}^{2}\Pi$ state from C₂H to C₇H. Of note: although a large dipole moment improves the likelihood of detecting a species, it also increases the long range attraction for other molecules and may lead to rapid destruction of the longer C_nH radicals that have not been detected.

4. The ${}^{2}\Sigma^{+}-{}^{2}\Pi$ state separations of C₂H, C₄H, and C₆H

The determination of accurate excitation energies requires a balanced treatment of the two states with respect to both methodology and the one-electron basis sets employed. In order to judge the expected accuracy of RCCSD(T)/cc-pVXZ calculations for describing the ${}^{2}\Sigma^{+}-{}^{2}\Pi$ equilibrium state separation T_e of $C_n H$ species, we will begin by benchmarking the behavior of C₂H. Although there have been several attempts to measure this quantity, a high accuracy value has not been determined. Values have ranged from 1600 to 3800 cm^{-1} [25]. The best theoretical work on C₂H has been reported by Kraemer et al. [26] $(T_e = 3650 \text{ cm}^{-1})$, Koures and Harding [27] $(T_e = 3550 \text{ cm}^{-1})$, Thümmel et al. [28] $(T_e = 3300 \text{ cm}^{-1})$ and Perić et al. [29], which should be consulted for citations to other previous ab initio work.

Table 3 lists total energies and T_e for CMRCI, CMRCI + Q, and RCCSD(T) calculations on C₂H with the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets and the extrapolation to the CBS limit. Given that it is not unusual to find CMRCI and CMRCI + Q calculations bracketing experiment [30], the intermediate location of the RCCSD(T) result lends credibility to using the method for C₄H and C₆H.

raole 5	Table	3
---------	-------	---

Total energies E_e and excitation energy T_e of the ${}^2\Sigma^+$ and ${}^2\Pi$ states of C₂H at the indicated levels of theory

Method	Basis set	$E_{\rm e}\left(E_{\rm h}\right)$		$T_{\rm e} ({\rm cm}^{-1})$
		$2\Sigma^+$	² П	
CMRCI	cc-pVDZ	- 76.39842	- 76.38398	3169.2
	cc-pVTZ	76.46115	- 76.44492	3562.1
	cc-pVQZ	- 76.47958	- 76.46280	3682.8
	est. CBS limit	- 76.48987	- 76.47277	3753
CMRCI + Q	cc-pVDZ	- 76.40374	- 76.39059	2886.1
	cc-pVTZ	- 76.46961	- 76.45517	3169.2
	cc-pVQZ	- 76.48892	- 76.47405	3263.6
	est. CBS limit	- 76.49969	- 76.48458	3316
RCCSD(T)	cc-pVDZ	- 76.40063	- 76.38738	2908.0
	cc-pVTZ	- 76.46779	- 76.45301	3243.8
	cc-pVQZ	- 76.48763	- 76.47236	3351.4
	est. CBS limit	- 76.49872	- 76.48316	3415
	cc-pCVTZ	- 76.569561	- 76.554047	3404.9

Table 4

Total energies E_e and excitation energy T_e of the ${}^{2}\Sigma^{+}$ (even *n*) and ${}^{2}\Pi$ states of C_nH at the RCCSD(T) level; a positive value of T_e indicates that the ${}^{2}\Sigma^{+}$ state is more stable

Species	Basis set	$E_{\rm e}(E_{\rm h})$	T _e	
		$^{2}\Sigma^{+}$	² П	(cm ⁻¹)
C ₃ H	cc-pVDZ	_	-114.35711	
	cc-pVTZ	-	-114.45638	
	cc-pVQZ	_	-114.48575	
	est. CBS limit	_	- 114.50216	
C₄H	cc-pVDZ	- 152.33985	-152.34105	-263
	cc-pVTZ	- 152.47463	- 152.47487	- 53
	cc-pVQZ ^a	- 152.50249	- 152.50236	29
	est. CBS limit	- 152.51664	- 152.51631	72
C,H	cc-pVDZ	_	- 190.30893	
5	cc-pVTZ	-	- 190.47665	
C ₆ H	cc-pVDZ	-228.28273	-228.28764	-1078
-	cc-pVTZ *	- 228.48539	- 228.48946	- 895
C ₇ H	cc-pVDZ	-	- 266.25606	

^a Single point calculation was performed using estimated bond lengths (see text).

The computed total energies for C₃H through C_7H as well as the T_e values for C_4H and C_6H are in Table 4. For C4H, the most recent correlated calculations for T_e are the combined experimental and theoretical study reported by McCarthy [7] and the work of Natterer and Koch [8]. Since the former study is quite similar to the present one, this discussion will focus on the latter work. Natterer and Koch found the ${}^{2}\Sigma^{+}$ state to be more stable at the MCSCF and MRCI levels, but the ${}^{2}\Pi$ state was more stable at the MRCI + Q, ACPF, and RCCSD(T) levels of theory. For the ACPF and MRCI + Q methods, the ${}^{2}\Pi$ state was more stable than the ${}^{2}\Sigma^{+}$ state by 100 to 240 cm^{-1} , depending upon the basis set used. On the other hand, T_e jumped to -1137 cm^{-1} or more for the RCCSD(T) method. The present calculations are at odds with these results. With the smallest cc-pVDZ sets, the $^{2}\Pi$ state is more stable, but only by 263 cm^{-1} . Improving the basis sets lowers the ${}^{2}\Sigma^{+}$ state preferentially, and it becomes more stable at the cc-pVQZ level, though only by 29 cm^{-1} . Extrapolating to the CBS limit stabilizes the ${}^{2}\Sigma^{+}$ state to 72 cm⁻¹ relative to the $^{2}\Pi$ state. The benchmark calculations on C₂H suggest that, if anything, RCCSD(T) may be underestimating T_e . Unfortunately, Natterer and Koch did not report calculations on the state separation in C_2H , which would have provided a test on the approach they adopted for C_4H . Aside from using different basis sets, they also ran the correlated calculations at their MCSCF optimized geometries. Their bond lengths are roughly comparable to the present RCCSD(T)/cc-pVTZ values, so this cannot account for the 1000 cm⁻¹ difference in T_e at either the cc-pVTZ level.

Natterer and Koch were forced by convergence problems in their RHF and UHF calculations to adopt the quasi-RHF (QRHF) method to generate zeroth-order wave functions. When MOLPRO was used to run an RCCSD(T) calculation based on an RHF wave function with the [4321/321] ANO basis set (yielding respective total energies for the ² II and ² Σ^+ states of -152.47037 and -152.46864 E_h), the ²II state was found to be only 378 cm⁻¹ more stable than the ² Σ^+ state, rather than the 1137 cm⁻¹ reported in Ref. [8]. The new value is more consistent with the present results and implies that the QRHF wave function introduces a large amount of error. Also, the MRCI and ACPF results noted above are closer to the RHF-based value of T_e .

While the cc-pVTZ and [4321/321] ANO sets yield similar total energies, their respective T_e values differ by more than 300 cm^{-1} . In order to test the accuracy of the ANO sets for describing state separations, the [4321/321] ANO contraction was used to determine T_e for C₂H (again at the cc-pVTZ geometry). A value of 2785 cm⁻¹ was obtained (with total energies for the ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ states of -76.46284and $-76.45015 E_{\rm h}$), which is about 460 cm⁻¹ below the cc-pVTZ result and in much poorer agreement with typical theoretical values. The trend for both C_2H and C_4H indicates that the [4321/321] ANO set performs less accurately than the cc-pVDZ set. The ANO sets are also much more computationally demanding. The present conclusion that the ground state of C_4H is a $^2\Sigma^+$ state is reinforced, although clearly the $^{2}\Pi$ state must lie remarkably close.

For C₆H, previous correlated efforts include the CI work of Pauzat and Ellinger [2], where the ²II state was found to be more stable than the ² Σ^+ state by 6385 and 2379 cm⁻¹ in first-order (FOCI) and limited second-order (SOCI) calculations, respectively. Natterer and Koch [8] reported a state separation of 2175 cm⁻¹ at the QRHF + CCSD(T)/

[4321/321] level. The best present value, using the cc-pVTZ sets and estimated geometries, places the ${}^{2}\Pi$ state 895 cm⁻¹ below the ${}^{2}\Sigma^{+}$ state.

Core and core-valence correlation impact excitation energies as well as bond lengths. Table 3 shows that the ${}^{2}\Sigma^{+}$ state of C₂H is stabilized by an additional 160 cm⁻¹ with respect to the valence-electron triple zeta result when the cc-pCVTZ sets were used in all-electron calculations. If the trend observed in CH₂ [12] carries over to C₂H, this correction may be too small by about 50% with respect to the CVXZ limit. The shift in C₂H suggests that the state separation in C₄H may be somewhat larger than the <100 cm⁻¹ valence CBS limit, perhaps reaching the 200– 300 cm⁻¹ range.

5. Electron affinities of C₂H and C₃H

The electron affinities of C_2H and C_3H were computed at the RCCSD(T) level by optimizing C_2H^- and C_3H^- with the aug-cc-pVTZ set on C and the cc-pVTZ set on H, which required reoptimizing the neutrals with the same sets. Geometries, energies and EAs are presented in Table 5. This strategy was sufficient to reproduce the EA of C_2H to within the experimental uncertainty (2.969 ± 0.006 eV, [31]), although the inclusion of a partial zero-

Table 5

Structures (r_e , Å; angle, deg) and total energies (E_e , E_0 , E_h) of C₂H, C₃H and their anions and adiabatic electron affinities (EA, eV) at the RCCSD(T)/{C: aug-cc-pVTZ; H: cc-pVTZ} level; experimental values are C₂H (2.969 ± 0.006) and C₃H (1.858 ± 0.023)

Species	Quantity	Neutral	Anion
$\overline{C_2H}$	$r_{e}(C_{1}-C_{2})$	1.2152	1.2549
-	r_{e} (C ₂ -H)	1.0658	1.0726
	E,	- 76.47122	- 76.58015
	(EA),	2.964.	
	E_0	- 76.45727	- 76.56592
	(EA) ₀	2.957	
C ₃ H	$r_{e}(C_{1}-C_{2})$	1.3468	1.2897
5	$r_{e}(C_{2}-C_{3})$	1.2484	1.3605
	r_{e} (C ₃ -H)	1.0654	1.1142
	$\angle (C_1 - C_2 - C_3)$	180	174.73
	$\angle (C_2 - C_3 - H)$	180	-108.25
	E,	- 114.46241	-114.52949
	(EA) _e	1.825	

point correction (omitting the frequencies associated with the Renner-Teller split bending modes) increases the error slightly, to 0.012 eV. Values of 3.15 and 2.96 eV, computed by Lima and Canuto [32] and Natterer and Koch [8], respectively, have previously been reported. Both C-C and C-H bonds length increase slightly in the anion, a ${}^{1}\Sigma^{+}$ state, but the effect is larger (≈ 0.04 Å) for the C-C bond.

While C_2H^- is linear, C_3H^- is not. The ground state is of ^TA' symmetry, and there is a low-lying, bound excited state of ${}^{3}A''$ symmetry. For the ${}^{1}\overline{A'}$ state, the C–C–C angle remains quasilinear ($\approx 175^{\circ}$), but the C-C-H angle has decreased to 141.2°. The C-C-C-H dihedral angle is 180°, making the terminal C and H trans with respect to the central C pair. The two C-C bond lengths change significantly with respect to the neutral. The computed equilibrium EA is 1.825 eV, which falls just slightly below the experimental range of (1.858 ± 0.023) of Oakes and Ellison [33]. Our result appears to be the first theoretical prediction of this quantity. The ${}^{3}A''$ state (E_{e} = $-114.52730 E_{\rm h}$) lies only 481 cm⁻¹ above the ground state with the triple zeta sets, but its geometry is somewhat different: $r_e(C_1-C_2) = 1.309$ Å, $r_{e}(C_{2}-C_{3}) = 1.312$ Å, $r_{e}(C_{3}-H) = 1.076$ Å, $\angle (C_{2}-H) = 1.076$ Å, C-C = 174.66° and \angle (C-C-H) = 141.20°. Dua et al. [9] reported structures optimized at the HF level for both states that are similar to the RCCSD(T) ones, but they found the ${}^{3}A''$ state to be slightly nonplanar. They also reported the triplet state to be lower in energy, by 7050 cm⁻¹ at the HF/6-311 + + G^{**} level and by 1236 cm⁻¹ at the CID/6-311 $+ + G^{**} / / HF / 6-311 + + G^{**}$ level.

6. Conclusions

The RCCSD(T) method and correlation consistent basis sets were used to determine the structures and other properties of C_nH radicals for n = 2-7. In general, predicted valence-correlation values of the rotational constants B_e were within 100 MHz of experimental or astronomical B_0 values; adding a correction for core and core-valence contraction improves the agreement substantially. The predicted $^2\Sigma^+-^2\Pi$ state separation of C_2H at the RCCSD(T) level of theory is in good agreement with values determined using multireference methods and with other theoretical results. In the estimated complete basis set limit, the ground states of C_2H and C_4H were found to be of ${}^{2}\Sigma^{+}$ symmetry and lie 3415 and 72 cm⁻¹ below their respective ${}^{2}\Pi$ states. The ${}^{2}\Pi$ ground state of C_6H lies 895 cm⁻¹ below the ${}^{2}\Sigma^{+}$ state (RCCSD(T)/cc-pVTZ).

The electron affinities of C_2H and C_3H were determined to be 2.964 and 1.825 eV, respectively, which agree well with the experimental values of 2.969 ± 0.006 and 1.858 ± 0.023 eV. Although C_2H^- is linear, C_3H^- is not: its ground state is a planar ¹A' state. A ³A'' state lies only 481 cm⁻¹ higher in energy.

Acknowledgements

This work was supported by Grant NAG 2-16 from NASA. The project was suggested by Dr. Sergio Maluendes. Dr. Kirk Peterson provided data for the ${}^{2}\Sigma^{+}$ state of C₂H taken from ongoing studies of CH_n and C₂H_n species. Dr. John Sheldon provided reprints and further information about his work with anions. Dr. Carl Gottlieb provided a preprint of their new work on the C₄H radical.

References

- [1] D.L. Cooper and S.C. Murphy, Astrophys. J. 333 (1988) 482.
- [2] F. Pauzat and Y. Ellinger, Astron. Astrophys. 216 (1989) 305.
- [3] F. Pauzat, Y. Ellinger and A.D. McLean, Astrophys. J. 369 (1991) L13.
- [4] K.I. Dismuke, W.R.M. Graham and W. Weltner Jr., J. Mol. Spectry. 57 (1975) 127.
- [5] C.A. Gottlieb, E.W. Gottlieb, P. Thaddeus and H. Kawamura, Astrophys. J. 275 (1983) 916.
- [6] L.N. Shen, T.J. Doyle and W.R.M. Graham, J. Chem. Phys. 93 (1990) 1597.
- [7] M.C. McCarthy, C.A. Gottlieb, P. Thaddeus, M. Horn and P. Botschwina, J. Chem. Phys., in press.
- [8] J. Natterer and W. Koch, Mol. Phys. 84 (1995) 691.
- [9] S. Dua, J.H. Bowie and J.C. Sheldon, J. Chem. Soc. Perkin Trans. II (1994) 543.
- [10] T.H Dunning Jr., J. Chem. Phys. 90 (1989) 1007.
- [11] R.A. Kendall, T.H. Dunning Jr. and R.J. Harrison, J. Chem. Phys. 96 (1992) 6796.
- [12] D.E. Woon and T.H. Dunning Jr., J. Chem. Phys., in press.
- [13] D.E. Woon and T.H. Dunning Jr., J. Chem. Phys. 99 (1993) 1914.

- [14] K.A. Peterson, R.A. Kendall and T.H. Dunning Jr., J. Chem. Phys. 99 (1993) 1930.
- [15] K.A. Peterson and T.H. Dunning Jr., J. Chem. Phys. 99 (1993) 9790.
- [16] K.A. Peterson, D.E. Woon and T.H. Dunning Jr., J. Chem. Phys. 100 (1994) 7410.
- [17] D.E. Woon and T.H. Dunning Jr., J. Chem. Phys. 101 (1994) 8877.
- [18] K.A. Peterson and T.H. Dunning Jr., J. Chem. Phys. 102 (1995) 2032.
- [19] M.J.O. Deegan and P.J. Knowles, Chem. Phys. Letters 227 (1994) 321, and references therein.
- [20] H.-J. Werner and P.J. Knowles, J. Chem. Phys. 89 (1988) 5803.
- [21] H.-J. Werner and P.J. Knowles, J. Chem. Phys. 82 (1985) 5053.
- [22] S.R. Langhoff and E.R. Davidson, Intern. J. Quantum Chem. 8 (1974) 61.

- [23] K.A. Peterson, unpublished results.
- [24] M. Mladwnović, S. Schamtz and P. Botschwina, J. Chem. Phys. 101 (1994) 5891.
- [25] D.E. Woon, submitted for publication.
- [26] W.P. Kraemer, B.O. Roos, P.R. Bunker and P. Jensen, J. Mol. Spectry. 120 (1986) 236.
- [27] A.G. Koures and L.B. Harding, J. Phys. Chem. 95 (1991) 1035.
- [28] H. Thümmel, M. Perić, S.D. Peyerimhoff and R.J. Buenker, Z. Physik D 13 (1989) 307.
- [29] M. Perić, S.D. Peyerimhoff and R.J. Buenker, Z. Physik D 24 (1992) 177.
- [30] K.A. Peterson, J. Chem. Phys. 102 (1995) 262.
- [31] K.M. Ervin and W.C. Lineberger, J. Chem. Phys. 95 (1991) 1167.
- [32] E.G. Lima and S. Canuto, Intern. J. Quantum Chem. Quantum Chem Symp. 22 (1988) 199.
- [33] J.M. Oakes and G.B. Ellison, Tetrahedron 42 (1986) 6263.