778 research outputs found

    Time dependence in perpendicular media with a soft underlayer

    Get PDF
    In this paper we describe measurements of magnetic viscosity or time dependence in magnetic thin films suitable for use as perpendicular recording media. Generally, such effects cannot be measured using conventional magnetometry techniques due to the presence of a thin (0.1 mum) soft underlayer (SUL) in the media necessary to focus the head field. To achieve our results we have developed an ultrastable MOKE magnetometer, the construction of which is described. This has enabled us to measure nominally identical films with and without the presence of the SUL. We find that the presence of the SUL narrows the energy barrier distribution in the perpendicular film increasing the nucleation field (H-n), reducing the coercivity (H-c) and results in an increase in the squareness of the loop. This in turn results in an increase in the magnitude of the viscosity in the region of the H-c but that the range of fields over which the viscosity occurs is reduced

    Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR

    Get PDF
    9 figures, 6 tables and 17 pages. This paper is part of the LOFAR surveys data release 1 and has been accepted for publication in a special edition of A&A that will appear in Feb 2019, volume 622. The catalogues and images from the data release will be publicly available on lofar-surveys.org upon publication of the journal. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density (ΣSFR\Sigma_{\rm SFR}) at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio ΣSFR\Sigma_{\rm SFR} maps using the Condon relation. We compared these maps with hybrid ΣSFR\Sigma_{\rm SFR} maps from a combination of GALEX far-ultraviolet and Spitzer 24 μm\mu\rm m data using plots tracing the relation at 1.2×1.21.2\times 1.2-kpc2^2 resolution. The RC emission is smoothed with respect to the hybrid ΣSFR\Sigma_{\rm SFR} owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation (ΣSFR)RC[(ΣSFR)hyb]a(\Sigma_{\rm SFR})_{\rm RC} \propto [(\Sigma_{\rm SFR})_{\rm hyb}]^{a}, where a=0.59±0.13a=0.59\pm 0.13 (140 MHz) and a=0.75±0.10a=0.75\pm 0.10 (1365 MHz). Both relations have a scatter of σ=0.3 dex\sigma = 0.3~\rm dex. If we restrict ourselves to areas of young CREs (α>0.65\alpha > -0.65; IνναI_\nu \propto \nu^\alpha), the relation becomes almost linear at both frequencies with a0.9a\approx 0.9 and a reduced scatter of σ=0.2 dex\sigma = 0.2~\rm dex. We then simulate the effect of CRE transport by convolving the hybrid ΣSFR\Sigma_{\rm SFR} maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are l=1l=1-5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of D=(0.13D=(0.13-1.5)×1028cm2s11.5) \times 10^{28} \rm cm^2\,s^{-1} at 1 GeV. A RC-SFR relation at 1.41.4 GHz can be exploited to measure SFRs at redshift z10z \approx 10 using 140140 MHz observations.Peer reviewe

    Microbial activity in surficial sediments overlying acoustic wipeout zones at a Gulf of Mexico cold seep

    Get PDF
    Down core concentration gradients of dissolved methane and sulfate; isotope gradients of methane, dissolved inorganic carbon, and authigenic carbonate; and organic matter elemental ratios are incorporated into a vent evolution model to describe spatial and temporal variability of sedimentary microbial activity overlying acoustic wipeout zones at Mississippi Canyon (MC) 118, Gulf of Mexico. We tested the hypothesis that these zones indicate areas where sediments are exposed to elevated fluid flux and therefore should contain saturated methane concentrations and enhanced microbial activity from sulfate reduction (SR), anaerobic oxidation of methane (AOM), and methanogenesis (MP). Thirty surficial cores (between 22 and 460 cm deep) were collected from sediments overlying and outside the wipeout zones and analyzed for pore water and solid phase constituents. Outside the wipeout zones, sulfate and methane concentrations were similar to overlying-water values and did not vary with depth; indicating low microbial activity. Above the wipeouts, nine cores showed moderate activity with gently sloping sulfate and methane concentration gradients, methane concentrations <20 μM, and isotope depth gradients indicative of organic matter oxidation. In stark contrast to this moderate activity, four cores showed high microbial activity where sulfate concentrations were depleted by ∼50 cm below seafloor, maximum methane concentrations in the decompressed cores were above 4 mM, and down core profiles of δ13C-CH4 and δ13C-dissolved inorganic carbon (DIC) indicated distinct depth zones of SR, AOM, and MP. Bulk organic matter analysis suggested that the high activity was supported by an organic source that was enriched in carbon (C:N ∼15) and depleted in d15N and δ13C compared to other activity groups, possibly due to the influx of petroleum or chemosynthetically fixed carbon. Within high activity cores, the δ13C-DIC values were similar to the δ13C-CaCO3 values, a result expected for authigenic carbonate recently precipitated. However, these values were dissimilar in moderate activity cores, suggesting that microbial activity was higher in the past. This study provides evidence that the fluid flux at MC 118 varies over time and that the microbial activity responds to such variability. It also suggests that sediments overlying wipeout zones are not always saturated with respect to methane, which has implications for the formation and detection of gas hydrate

    Relationships between Endogenous Plasma Biomarkers of Constitutive Cytochrome P450 3A Activity and Single-Time-Point Oral Midazolam Microdose Phenotype in Healthy Subjects

    Get PDF
    Due to high basal interindividual variation in cytochrome P450 3A (CYP3A) activity and susceptibility to drug interactions, there has been interest in the application of efficient probe drug phenotyping strategies, as well as endogenous biomarkers for assessment of in vivo CYP3A activity. The biomarkers 4β-hydroxycholesterol (4βHC) and 6β-hydroxycortisol (6βHCL) are sensitive to CYP3A induction and inhibition. However, their utility for the assessment of constitutive CYP3A activity remains uncertain. We investigated whether endogenous plasma biomarkers (4βHC and 6βHCL) are associated with basal CYP3A metabolic activity in healthy subjects assessed by a convenient single-time-point oral midazolam (MDZ) phenotyping strategy. Plasma 4βHC and 6βHCL metabolic ratios (MRs) were analysed in 51 healthy adult participants. CYP3A activity was determined after administration of an oral MDZ microdose (100 μg). Simple linear and multiple linear regression analyses were performed to assess relationships between MDZ oral clearance, biomarkers and subject covariates. Among study subjects, basal MDZ oral clearance, 4βHC and 6βHCL MRs ranged 6.5-, 10- and 13-fold, respectively. Participant age and alcohol consumption were negatively associated with MDZ oral clearance (p = 0.03 and p = 0.045, respectively), while weight and female sex were associated with lower plasma 4βHC MR (p = 0.0003 and p = 0.032, respectively). Neither 4βHC nor 6βHCL MRs were associated with MDZ oral clearance. Plasma 4βHC and 6βHCL MRs do not relate to MDZ single-time-point metabolic phenotype in the assessment of constitutive CYP3A activity among healthy individuals

    Clarifying the importance of CYP2C19 and PON1 in the mechanism of clopidogrel bioactivation and in vivo antiplatelet response

    Get PDF
    AimsIt is thought that clopidogrel bioactivation and antiplatelet response are related to cytochrome P450 2C19 (CYP2C19). However, a recent study challenged this notion by proposing CYP2C19 as wholly irrelevant, while identifying paraoxonase-1 (PON1) and its Q192R polymorphism as the major driver of clopidogrel bioactivation and efficacy. The aim of this study was to systematically elucidate the mechanism and relative contribution of PON1 in comparison to CYP2C19 to clopidogrel bioactivation and antiplatelet response.Methods and resultsFirst, the influence of CYP2C19 and PON1 polymorphisms and plasma paraoxonase activity on clopidogrel active metabolite (H4) levels and antiplatelet response was assessed in a cohort of healthy subjects (n = 21) after administration of a single 75 mg dose of clopidogrel. There was a remarkably good correlation between H4 AUC (0-8 h) and antiplatelet response (r2 = 0.78). Furthermore, CYP2C19 but not PON1 genotype was predictive of H4 levels and antiplatelet response. There was no correlation between plasma paraoxonase activity and H4 levels. Secondly, metabolic profiling of clopidogrel in vitro confirmed the role of CYP2C19 in bioactivating clopidogrel to H4. However, heterologous expression of PON1 in cell-based systems revealed that PON1 cannot generate H4, but mediates the formation of another thiol metabolite, termed Endo. Importantly, Endo plasma levels in humans are nearly 20-fold lower than H4 and was not associated with any antiplatelet response.ConclusionOur results demonstrate that PON1 does not mediate clopidogrel active metabolite formation or antiplatelet action, while CYP2C19 activity and genotype remains a predictor of clopidogrel pharmacokinetics and antiplatelet response. © 2012 The Author

    Global Directional Control of a Slender Autonomous Underwater Vehicle

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77142/1/AIAA-20475-500.pd
    corecore