45 research outputs found

    effect of electrical water bath stunning on physical reflexes of broilers evaluation of stunning efficacy under field conditions

    Get PDF
    Abstract The effects of different amounts and frequencies of stunning sine wave alternating current were investigated under field conditions. Seven hundred and fifty broilers were stunned in an electrical water bath with an average root mean square (RMS) current of 150, 200, and 250 mA and frequencies of 200, 400, 600, 800, and 1,200 Hz. The occurrence of corneal reflex, spontaneous eye blinking, and a positive response to a painful stimulus were monitored and recorded immediately after the stunning and at 20 s post-stun. Statistical analysis showed that the electrical stunning frequency (P = 0.0004), the stunning RMS current (P At a current of 150 mA, the probability of a successful stun was over 90% at 200 Hz, approximately 40% at 400 Hz, and below 5% for frequencies greater than 600 Hz. So, stunning at frequencies greater than 600 Hz cannot be recommended when a RMS current of 150 mA is applied. The maximum probability of a successful stun was obtained for a current level of 200 mA at 400 Hz and for a current level of 250 mA at 400 and 600 Hz, whereas the stunning treatments at 1,200 Hz provided the lowest probability of a successful stun. Assessment of spontaneous eye blinking and responses to comb pinching confirmed the indications coming from the analysis of corneal reflex

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Treating Adolescent Obesity

    No full text
    corecore