13 research outputs found
HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973--2011
[Abridged] This paper describes the creation of HadISD: an automatically
quality-controlled synoptic resolution dataset of temperature, dewpoint
temperature, sea-level pressure, wind speed, wind direction and cloud cover
from global weather stations for 1973--2011. The full dataset consists of over
6000 stations, with 3427 long-term stations deemed to have sufficient sampling
and quality for climate applications requiring sub-daily resolution. As with
other surface datasets, coverage is heavily skewed towards Northern Hemisphere
mid-latitudes.
The dataset is constructed from a large pre-existing ASCII flatfile data bank
that represents over a decade of substantial effort at data retrieval,
reformatting and provision. These raw data have had varying levels of quality
control applied to them by individual data providers. The work proceeded in
several steps: merging stations with multiple reporting identifiers;
reformatting to netCDF; quality control; and then filtering to form a final
dataset. Particular attention has been paid to maintaining true extreme values
where possible within an automated, objective process. Detailed validation has
been performed on a subset of global stations and also on UK data using known
extreme events to help finalise the QC tests. Further validation was performed
on a selection of extreme events world-wide (Hurricane Katrina in 2005, the
cold snap in Alaska in 1989 and heat waves in SE Australia in 2009). Although
the filtering has removed the poorest station records, no attempt has been made
to homogenise the data thus far. Hence non-climatic, time-varying errors may
still exist in many of the individual station records and care is needed in
inferring long-term trends from these data.
A version-control system has been constructed for this dataset to allow for
the clear documentation of any updates and corrections in the future.Comment: Published in Climate of the Past, www.clim-past.net/8/1649/2012/. 31
pages, 23 figures, 9 pages. For data see
http://www.metoffice.gov.uk/hadobs/hadis
Daily low-dose prednisolone to prevent relapse of steroid-sensitive nephrotic syndrome in children with an upper respiratory tract infection:PREDNOS2 RCT
BACKGROUND: Most children with steroid-sensitive nephrotic syndrome have relapses that are triggered by upper respiratory tract infections. Four small trials, mostly in children already taking maintenance corticosteroid in countries of different upper respiratory tract infection epidemiology, showed that giving daily low-dose prednisone/prednisolone for 5-7 days during an upper respiratory tract infection reduces the risk of relapse. OBJECTIVES: To determine if these findings were replicated in a large UK population of children with relapsing steroid-sensitive nephrotic syndrome on different background medication or none. DESIGN: A randomised double-blind placebo-controlled trial, including a cost-effectiveness analysis. SETTING: A total of 122 UK paediatric departments, of which 91 recruited patients. PARTICIPANTS: A total of 365 children with relapsing steroid-sensitive nephrotic syndrome (mean age 7.6 ± 3.5 years) were randomised (1 : 1) according to a minimisation algorithm based on background treatment. Eighty children completed 12 months of follow-up without an upper respiratory tract infection. Thirty-two children were withdrawn from the trial (14 prior to an upper respiratory tract infection), leaving a modified intention-to-treat analysis population of 271 children (134 and 137 children in the prednisolone and placebo arms, respectively). INTERVENTIONS: At the start of an upper respiratory tract infection, children received 6 days of prednisolone (15 mg/m2) or an equivalent dose of placebo. MAIN OUTCOME MEASURES: The primary outcome was the incidence of first upper respiratory tract infection-related relapse following any upper respiratory tract infection over 12 months. The secondary outcomes were the overall rate of relapse, changes in background treatment, cumulative dose of prednisolone, rates of serious adverse events, incidence of corticosteroid adverse effects, change in Achenbach Child Behaviour Checklist score and quality of life. Analysis was by intention-to-treat principle. The cost-effectiveness analysis used trial data and a decision-analytic model to estimate quality-adjusted life-years and costs at 1 year, which were then extrapolated over 16 years. RESULTS: There were 384 upper respiratory tract infections and 82 upper respiratory tract infection-related relapses in the prednisolone arm, and 407 upper respiratory tract infections and 82 upper respiratory tract infection-related relapses in the placebo arm. The number of patients experiencing an upper respiratory tract infection-related relapse was 56 (42.7%) and 58 (44.3%) in the prednisolone and placebo arms, respectively (adjusted risk difference -0.024, 95% confidence interval -0.14 to 0.09; p = 0.70). There was no evidence that the treatment effect differed when data were analysed according to background treatment. There were no significant differences in secondary outcomes between treatment arms. Giving daily prednisolone at the time of an upper respiratory tract infection was associated with increased quality-adjusted life-years (0.9427 vs. 0.9424) and decreased average costs (£252 vs. £254), when compared with standard care. The cost saving was driven by background therapy and hospitalisations after relapse. The finding was robust to sensitivity analysis. LIMITATIONS: A larger number of children than expected did not have an upper respiratory tract infection and the sample size attrition rate was adjusted accordingly during the trial. CONCLUSIONS: The clinical analysis indicated that giving 6 days of daily low-dose prednisolone at the time of an upper respiratory tract infection does not reduce the risk of relapse of steroid-sensitive nephrotic syndrome in UK children. However, there was an economic benefit from costs associated with background therapy and relapse, and the health-related quality-of-life impact of having a relapse. FUTURE WORK: Further work is needed to investigate the clinical and health economic impact of relapses, interethnic differences in treatment response, the effect of different corticosteroid regimens in treating relapses, and the pathogenesis of individual viral infections and their effect on steroid-sensitive nephrotic syndrome. TRIAL REGISTRATION: Current Controlled Trials ISRCTN10900733 and EudraCT 2012-003476-39. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 3. See the NIHR Journals Library website for further project information
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Evaluation of Daily Low-Dose Prednisolone during Upper Respiratory Tract Infection to Prevent Relapse in Children with Relapsing Steroid-Sensitive Nephrotic Syndrome:The PREDNOS 2 Randomized Clinical Trial
Importance: In children with corticosteroid-sensitive nephrotic syndrome, many relapses are triggered by upper respiratory tract infections. Four small studies found that administration of daily low-dose prednisolone for 5 to 7 days at the time of an upper respiratory tract infection reduced the risk of relapse, but the generalizability of their findings is limited by location of the studies and selection of study population. Objective: To investigate the use of daily low-dose prednisolone for the treatment of upper respiratory tract infection-related relapses. Design, Setting, and Participants: This double-blind, placebo-controlled randomized clinical trial (Prednisolone in Nephrotic Syndrome [PREDNOS] 2) evaluated 365 children with relapsing steroid-sensitive nephrotic syndrome with and without background immunosuppressive treatment at 122 pediatric departments in the UK from February 1, 2013, to January 31, 2020. Data from the modified intention-to-treat population were analyzed from July 1, 2020, to December 31, 2020. Interventions: At the start of an upper respiratory tract infection, children received 6 days of prednisolone, 15 mg/m2daily, or matching placebo preparation. Those already taking alternate-day prednisolone rounded their daily dose using trial medication to the equivalent of 15 mg/m2daily or their alternate-day dose, whichever was greater. Main Outcomes and Measures: The primary outcome was the incidence of first upper respiratory tract infection-related relapse. Secondary outcomes included overall rate of relapse, changes in background immunosuppressive treatment, cumulative dose of prednisolone, rates of serious adverse events, incidence of corticosteroid adverse effects, and quality of life. Results: The modified intention-to-treat analysis population comprised 271 children (mean [SD] age, 7.6 [3.5] years; 174 [64.2%] male), with 134 in the prednisolone arm and 137 in the placebo arm. The number of patients experiencing an upper respiratory tract infection-related relapse was 56 of 131 (42.7%) in the prednisolone arm and 58 of 131 (44.3%) in the placebo arm (adjusted risk difference, -0.02; 95% CI, -0.14 to 0.10; P =.70). No evidence was found that the treatment effect differed according to background immunosuppressive treatment. No significant differences were found in secondary outcomes between the treatment arms. A post hoc subgroup analysis assessing the primary outcome in 54 children of South Asian ethnicity (risk ratio, 0.66; 95% CI, 0.40-1.10) vs 208 children of other ethnicity (risk ratio, 1.11; 95% CI, 0.81-1.54) found no difference in efficacy of intervention in those of South Asian ethnicity (test for interaction P =.09). Conclusions and Relevance: The results of PREDNOS 2 suggest that administering 6 days of daily low-dose prednisolone at the time of an upper respiratory tract infection does not reduce the risk of relapse of nephrotic syndrome in children in the UK. Further work is needed to investigate interethnic differences in treatment response. Trial Registration: isrctn.org Identifier: ISRCTN10900733; EudraCT 2012-003476-39.</p
Whole-genome sequencing reveals host factors underlying critical COVID-19
Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease