73 research outputs found

    Locating Relict Sinter Terrace Sites at Lake Rotomahana, New Zealand, With Ferdinand von Hochstetter's Legacy Cartography, Historic Maps, and LIDAR

    Get PDF
    Te Otukapuarangi (the Pink Terrace), Te Tarata (the White Terrace) and Te Ngāwhā a Te Tuhi (the Black Terrace) were massive siliceous sinter formations at Lake Rotomahana, New Zealand, that were ostensibly lost in the catastrophic 1886 Tarawera eruption. Previous work using an unpublished watercolor map and notes by Ferdinand von Hochstetter (b. 1829–d. 1884) has recently supported claims that the former Pink and White Terraces survived the 1886 eruption, and that they may be located under tephra adjacent to the modern lake margin. Divergent perspectives about the fate of Lake Rotomahana's former sinter terraces suggest the reconstruction of New Zealand's largest historic volcanic eruption is incomplete. The undervalued approach of pairing modern geomorphic techniques with extant historic resources and geophysical data can help resolve this controversy. We harnessed a wider amount of unique historic data recorded during Hochstetter's (1859) survey than previously reported to locate the sites of Lake Rotomahana's former sinter terraces. Volcanic landforms, the physical geography of the countryside, and former settlements are tied together via common sightings between sequential survey datums. Light detection and ranging (LIDAR) data supported the reconstruction of Hochstetter's (1859) survey. Of significance, shared landmarks between the survey stations increased the confidence for resecting the 1859 datum position on the southern margin of former Lake Rotomahana. Hochstetter's survey watercolor maps are part of a series drafted prior to a final version being professionally printed, and they do not portray a spatially accurate depiction of how sinter terraces and geothermal features around former Lake Rotomahana were arranged. As such, assertions of their superior cartographic nature are not well-founded, and application of them to provide former Terrace locations is compromised. The published pre-eruption map of Lake Rotomahana validates well against Hochstetter's field diary measurements. When Hochstetter's published map is orientated using reconstructed survey datum positions at Lake Rotomahana, the former locations of the White and Pink Terraces lie entirely within the modern boundaries of the lake and not on land. The Black Terrace may have been destroyed and/or converted to an eruption crater, but may still exist on land (intact or in-part) west of Lake Rotomahana's modern shoreline. This study demonstrates the value of historic cartography to improve understanding of volcanic processes, and the potential to apply similar approaches to volcanic environments elsewhere that hold a range of pre-instrumental observations

    The Epidemiology of Staphylococcus aureus and Panton-Valentine Leucocidin (pvl) in Central Australia, 2006-2010

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: The Central Australian Indigenous population has a high incidence of Staphylococcus aureus bacteremia (SAB) but little is known about the local molecular epidemiology. Methods: Prospective observational study of bacteremic and nasal colonizing S.aureus isolates between June 2006 to June 2010. All isolates underwent single nucleotide polymorphism (SNP) genotyping and testing for the presence of the Panton-Valentine Leucocidin (pvl) gene. Results: Invasive isolates (n = 97) were predominantly ST93 (26.6 %) and pvl positive (54.3 %), which was associated with skin and soft tissue infections (OR 4.35, 95 % CI 1.16, 16.31). Non-multiresistant MRSA accounted for 31.9 % of bacteremic samples and showed a trend to being healthcare associated (OR 2.16, 95 % CI 0.86, 5.40). Non-invasive isolates (n = 54) were rarely ST93 (1.9 %) or pvl positive (7.4 %). Conclusions: In Central Australia, ST93 was the dominant S.aureus clone, and was frequently pvl positive and associated with an aggressive clinical phenotype. Whether non-nasal carriage is more important with invasive clones or whether colonization occurs only transiently remains to be elucidated

    Pharmacological characterisation of MDI-222, a novel AMPA receptor positive allosteric modulator with an improved safety profile

    Get PDF
    There is considerable interest in positive allosteric modulators (PAMs) of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) subtype of ionotropic glutamate receptors as therapeutic agents for a range of cognitive and mood disorders. However, the challenge is to increase AMPA receptor (AMPAR) function sufficient to enhance cognitive function but not to the extent that there are mechanism-related pro-convulsant or convulsant side effects. In this present study, we report the preclinical pharmacology data for MDI-222, an AMPAR PAM which enhances cognition but has a much reduced side-effect (i.e. convulsant) liability relative to other molecules of this mechanism

    Insights into the Spectrum of Activity and Mechanism of Action of MGB-BP-3

    Get PDF
    MGB-BP-3 is a potential first-in-class antibiotic, a Strathclyde Minor Groove Binder (S-MGB), that has successfully completed Phase IIa clinical trials for the treatment of Clostridioides difficile associated disease. Its precise mechanism of action and the origin of limited activity against Gram-negative pathogens are relatively unknown. Herein, treatment with MGB-BP-3 alone significantly inhibited the bacterial growth of the Gram-positive, but not Gram-negative, bacteria as expected. Synergy assays revealed that inefficient intracellular accumulation, through both permeation and efflux, is the likely reason for lack of Gram-negative activity. MGB-BP-3 has strong interactions with its intracellular target, DNA, in both Gram-negative and Gram-positive bacteria, revealed through ultraviolet–visible (UV–vis) thermal melting and fluorescence intercalator displacement assays. MGB-BP-3 was confirmed to bind to dsDNA as a dimer using nano-electrospray ionization mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Type II bacterial topoisomerase inhibition assays revealed that MGB-BP-3 was able to interfere with the supercoiling action of gyrase and the relaxation and decatenation actions of topoisomerase IV of both Staphylococcus aureus and Escherichia coli. However, no evidence of stabilization of the cleavage complexes was observed, such as for fluoroquinolones, confirmed by a lack of induction of DSBs and the SOS response in E. coli reporter strains. These results highlight additional mechanisms of action of MGB-BP-3, including interference of the action of type II bacterial topoisomerases. While MGB-BP-3′s lack of Gram-negative activity was confirmed, and an understanding of this presented, the recognition that MGB-BP-3 can target DNA of Gram-negative organisms will enable further iterations of design to achieve a Gram-negative active S-MGB

    Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States

    Get PDF
    Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration. © 2023 the Author(s)

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore