370 research outputs found

    Characterisation of an enhanced preclinical model of experimental MPO-ANCA autoimmune vasculitis

    Get PDF
    Experimental autoimmune vasculitis (EAV) is a model of antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) induced by immunisation of susceptible rat strains with myeloperoxidase (MPO). Animals develop circulating MPO-ANCA, pulmonary haemorrhage and glomerulonephritis, although renal injury is mild and recovers spontaneously without treatment. In this study we aimed to augment the severity of glomerulonephritis. Following induction of EAV on day 0, a sub-nephritogenic dose of nephrotoxic serum (NTS) containing heterologous antibodies to glomerular basement membrane was administered on day 14. This resulted in a significant increase in disease severity at day 28 compared to MPO immunisation alone - with more urinary abnormalities, infiltrating glomerular leucocytes, and crescent formation that progressed to glomerular and tubulointerstitial scarring by day 56, recapitulating important features of human disease. Importantly, the glomerulonephritis remained pauci-immune, and was strictly dependent on the presence of autoimmunity to MPO, as there was no evidence of renal disease following administration of sub-nephritogenic NTS alone or after immunisation with a control protein in place of MPO. Detailed phenotyping of glomerular leucocytes identified an early infiltrate of non-classical monocytes following NTS administration that, in the presence of autoimmunity to MPO, may initiate the subsequent influx of classical monocytes which augment glomerular injury. We also showed that this model can be used to test novel therapeutics by using a small molecule kinase inhibitor (fostamatinib) that rapidly attenuated both glomerular and pulmonary injury over a four-day treatment period. We believe that this enhanced model of MPO-AAV will prove useful for the study of glomerular leucocyte behaviour and novel therapeutics in AAV in the future. This article is protected by copyright. All rights reserved

    Extracellular bacterial lymphatic metastasis drives Streptococcus pyogenes systemic infection

    Get PDF
    Unassisted metastasis through the lymphatic system is a mechanism of dissemination thus far ascribed only to cancer cells. Here, we report that Streptococcus pyogenes also hijack lymphatic vessels to escape a local infection site, transiting through sequential lymph nodes and efferent lymphatic vessels to enter the bloodstream. Contrasting with previously reported mechanisms of intracellular pathogen carriage by phagocytes, we show S. pyogenes remain extracellular during transit, first in afferent and then efferent lymphatics that carry the bacteria through successive draining lymph nodes. We identify streptococcal virulence mechanisms important for bacterial lymphatic dissemination and show that metastatic streptococci within infected lymph nodes resist and subvert clearance by phagocytes, enabling replication that can seed intense bloodstream infection. The findings establish the lymphatic system as both a survival niche and conduit to the bloodstream for S. pyogenes, explaining the phenomenon of occult bacteraemia. This work provides new perspectives in streptococcal pathogenesis with implications for immunity

    The EG95 Antigen of Echinococcus spp. Contains Positively Selected Amino Acids, which May Influence Host Specificity and Vaccine Efficacy

    Get PDF
    Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy

    The GPIbα intracellular tail - role in transducing VWF- and collagen/GPVI-mediated signaling.

    Get PDF
    The GPIbT-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy between GPIbα and GPVI signaling machineries has been suggested previously, however its molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse (GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence of a oIIbI3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin exposure and eIIbI3 activation, suggesting a role for the GpIbaaintracellular tail in GPVI-mediated signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free blood or in the presence of bIIbI3- or GPVI-blockers suggested reduced bIIbI3 activation contributes to the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the intracellular tail of GPIbiiin transducing both VWF-GPIbGGand collagen-GPVI signaling events in platelets

    Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways

    Get PDF
    P2RX7, an ionotropic receptor for extracellular ATP, is expressed on immune cells, including macrophages, monocytes and dendritic cells and is up-regulated on non-immune cells following injury. P2RX7 plays a role in many biological processes, including production of pro-inflammatory cytokines such as IL-1ÎČ via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knock-out (KO) inbred rat strain and taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identify a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for production of IL-1ÎČ in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1ÎČ independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. This article is protected by copyright. All rights reserved

    The invisible plan: how English teachers develop their expertise and the special place of adapting the skills of lesson planning

    Get PDF
    This paper analyses how English teachers learn to become expert designers of learning and why sharing that expertise is increasingly vital. Its conceptual framework is the widely recognised, empirically tested, five-stage developmental Dreyfus model of skill acquisition, exemplifying the development of teacher expertise, constituted by the “milestone” [m] and “transitory” [t] phases connecting with the five stages of: Novice [m], Advanced Beginner [t], Competent [m], Proficient [t] and Expert [m]. Teacher planning is analysed as one key tacit or non-tangible component of developing expertise. Focusing specifically on English teachers as key participants in this pioneer teacher cognition study, the defining characteristics of milestone stages of expertise development are explored with specific attention to the remarkably under-researched area of planning. We introduce three new categories, defining modes of planning: (i) visible practical planning, (ii) external reflective planning and (iii) internal reflective planning, demonstrating their role in teacher development through the Dreyfus five stages. English is a subject which suffers from frequent disruptive changes to curriculum and assessment: new learning designs are constantly demanded, making planning an ongoing challenge. The implications for practice include the importance of an explicit understanding of how teachers’ planning moves through the three phases from the very “visible” novice phase to the internal relatively “automatic” competent teacher and finally the seemingly “invisible” expert phase. Further research is needed to explore how English teachers can share planning expertise between the three phases to improve teachers’ skills and student learning

    Telomere Length of Circulating Leukocyte Subpopulations and Buccal Cells in Patients with Ischemic Heart Failure and Their Offspring

    Get PDF
    BACKGROUND: We aimed to find support for the hypothesis that telomere length (TL) is causally involved in the pathogenesis of ischemic heart failure (IHF). We measured TL in IHF patients and their high-risk offspring and determined whether mean leukocyte TL reflects TL in CD34+ progenitor. We additionally measured TL of offspring of patients and controls to examine heritability throughout different cell types. METHODS AND RESULTS: TL was measured by qPCR in overall leukocytes, CD34+ progenitor cells, mononuclear cells (MNCs), and buccal cells in 27 IHF patients, 24 healthy controls and 60 offspring. TL in IHF patients was shorter than healthy controls in leukocytes (p = 0.002), but not in CD34+ cells (p = 0.39), MNCs (p = 0.31) or buccal cells (p = 0.19). Offspring of IHF patients had shorter TL in leukocytes than offspring of healthy subjects (p = 0.04) but not in other cell types. Controls and offspring showed a good within person correlation between leukocytes and CD34+ cells (r 0.562; p = 0.004 and r 0.602; p = 0.001, respectively). In IHF patients and offspring the correlation among cell types was blunted. Finally, we found strong correlations between parent and offspring TL in all four cell types. CONCLUSIONS: Reduced leukocyte TL in offspring of IHF subjects suggests a potential causal link of TL in ischemic heart disease. However, this causality is unlikely to originate from exhaustion of TL in CD34+ progenitor or MNC cells as their lengths are not well captured by overall leukocyte TL. Additionally, we found strong correlations between parent and offspring TL in all examined cell types, suggesting high heritability of TL among cell types

    Effects of inosine on reperfusion injury after cardiopulmonary bypass

    Get PDF
    Objective: Inosine, a break-down product of adenosine has been recently shown to exert inodilatory and anti-inflammatory properties. Furthermore inosine might be a key substrate of pharmacological post-conditioning. In the present pre-clinical study, we investigated the effects of inosine on cardiac function during reperfusion in an experimental model of cardioplegic arrest and extracorporal circulation. Methods: Twelve anesthetized dogs underwent hypothermic cardiopulmonary bypass. After 60 minutes of hypothermic cardiac arrest, reperfusion was started after application of either saline vehicle (control, n = 6), or inosine (100 mg/kg, n = 6). Left ventricular end-systolic pressure volume relationship (ESPVR) was measured by a combined pressure-volume-conductance catheter at baseline and after 60 minutes of reperfusion. Left anterior descendent coronary blood flow (CBF), endothelium-dependent vasodilatation to acetylcholine (ACh) and endothelium-independent vasodilatation to sodium nitroprusside (SNP) were also determined. Results: The administration of inosine led to a significantly better recovery (given as percent of baseline) of ESPVR 90 ± 9% vs. 46 ± 6%, p &lt; 0.05. CBF and was also significantly higher in the inosine group (56 ± 8 vs. 23 ± 4, ml/min, p < 0.05). While the vasodilatatory response to SNP was similar in both groups, ACh resulted in a significantly higher increase in CBF (58 ± 6% vs. 25 ± 5%, p < 0.05) in the inosine group. Conclusions: Application of inosine improves myocardial and endothelial function after cardiopulmonary bypass with hypothermic cardiac arrest

    The Caenorhabditis elegans GATA Factor ELT-1 Works through the Cell Proliferation Regulator BRO-1 and the Fusogen EFF-1 to Maintain the Seam Stem-Like Fate

    Get PDF
    Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFÎČ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi) animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation
    • 

    corecore