418 research outputs found

    C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins

    Get PDF
    An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats in Drosophila caused adult-onset neurodegeneration attributable to poly-(glycine-arginine) proteins. Thus, expanded repeats promoted neurodegeneration through neurotoxic proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence showed both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration

    Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles

    Get PDF
    Copyright © 2013 American Physical SocietyWe consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting a localized surface plasmon, and study the quantum properties of the collective plasmons resulting from the near-field dipolar interaction between the nanoparticles. We analytically investigate the dispersion, the effective Hamiltonian, and the eigenstates of the collective plasmons for an arbitrary orientation of the individual dipole moments. When the polarization points close to the normal to the plane, the spectrum presents Dirac cones, similar to those present in the electronic band structure of graphene. We derive the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent Dirac-like massless bosonic excitations that present similar effects to electrons in graphene, such as a nontrivial Berry phase and the absence of backscattering off smooth inhomogeneities. We further discuss how one can manipulate the Dirac points in the Brillouin zone and open a gap in the collective plasmon dispersion by modifying the polarization of the localized surface plasmons, paving the way for a fully tunable plasmonic analogue of graphene

    A Pinned Polymer Model of Posture Control

    Full text link
    A phenomenological model of human posture control is posited. The dynamics are modelled as an elastically pinned polymer under the influence of noise. The model accurately reproduces the two-point correlation functions of experimental posture data and makes predictions for the response function of the postural control system. The physiological and clinical significance of the model is discussed.Comment: uuencoded post script file, 17 pages with 3 figure

    Cerebrospinal fluid YKL-40 and chitotriosidase levels in frontotemporal dementia

    Get PDF
    Background: Chronic glial dysfunction may contribute to the pathogenesis of frontotemporal dementia (FTD). Cerebrospinal fluid (CSF) levels of glia-derived proteins YKL-40 and chitotriosidase are increased in Alzheimer’s disease (AD) but have not been explored in detail across the spectrum of FTD. Methods: We investigated whether CSF YKL-40 and chitotriosidase levels differed between FTD patients and controls, across different clinical and genetic subtypes of FTD, and between individuals with a clinical FTD syndrome due to AD versus non-AD (frontotemporal lobar degeneration, FTLD) pathology (based on CSF neurodegenerative biomarkers). Eighteen healthy controls and 64 people with FTD (behavioural variant FTD, n = 20; primary progressive aphasia [PPA], n = 44: nfvPPA, n = 16, svPPA, n = 11, lvPPA, n = 14, PPA-NOS, n = 3) were included. 10/64 had familial FTD, with mutations in GRN(n = 3), MAPT(n = 4), or C9orf72 (n = 3). 15/64 had neurodegenerative biomarkers consistent with AD pathology. Levels were measured by immunoassay and compared using multiple linear regressions. We also examined relationships of YKL-40 and chitotriosidase with CSF total tau (T-tau), phosphorylated tau 181 (P-tau) and β-amyloid 1–42 (Aβ42), with each other, and with age and disease du­ration. Results: CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-40), compared with controls. GRN mutation carriers had higher levels of both proteins than controls and C9orf72 expansion carriers, and YKL-40 was higher in MAPT mutation carriers than controls. Individuals with underlying AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and Aβ42, and with each other, depending on clinical syndrome and underlying pathology. CSF YKL-40 but not chitotriosidase was associated with age, but not disease duration. Conclusion: CSF YKL-40 and chitotriosidase levels are increased in individuals with clinical FTD syndromes, particularly due to AD pathology. In a preliminary analysis of genetic groups, levels of both proteins are found to be highly elevated in FTD due to GRN mutations, while YKL-40 is increased in individuals with MAPT mutations. As glia-derived protein levels generally correlate with T-tau and P-tau levels, they may reflect the glial response to neurodegeneration in FTLD

    Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup.

    Get PDF
    BACKGROUND: Reliable biomarkers of frontotemporal dementia (FTD) are currently lacking. FTD may be associated with chronic immune dysfunction, microglial activation and raised inflammatory markers, particularly in progranulin (GRN) mutation carriers. Levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) are elevated in Alzheimer's disease (AD), but they have not been fully explored in FTD. METHODS: We investigated whether cerebrospinal fluid (CSF) sTREM2 levels differ between FTD and controls, across different clinical and genetic subtypes of FTD, or between individuals with FTD due to AD versus non-AD pathology (based on CSF neurodegenerative biomarkers). We also assessed relationships between CSF sTREM2 and other CSF biomarkers (total tau [T-tau], tau phosphorylated at position threonine-181 [P-tau] and β-amyloid 1-42 [Aβ42]) and age and disease duration. Biomarker levels were measured using immunoassays in 17 healthy controls and 64 patients with FTD (behavioural variant FTD, n = 20; primary progressive aphasia, n = 44). Ten of 64 had familial FTD, with mutations in GRN (n = 3), MAPT (n = 4), or C9orf72 (n = 3). Fifteen of 64 had neurodegenerative biomarkers consistent with AD pathology (11 of whom had logopenic variant PPA). Levels were compared using multivariable linear regressions. RESULTS: CSF sTREM2 levels did not differ between FTD and controls or between clinical subgroups. However, GRN mutation carriers had higher levels than controls (mean ([SD] = 9.7 [2.9] vs. 6.8 [1.6] ng/ml; P = 0.028) and MAPT (3.9 [1.5] ng/ml; P = 0.003] or C9orf72 [4.6 [1.8] ng/ml; P = 0.006) mutation carriers. Individuals with AD-like CSF had higher sTREM2 levels than those with non-AD-like CSF (9.0 [3.6] vs. 6.9 [3.0] ng/ml; P = 0.029). CSF sTREM2 levels were associated with T-tau levels in control and FTD groups and also with P-tau in those with FTD and AD-like CSF. CSF sTREM2 levels were influenced by both age and disease duration in FTD. CONCLUSIONS: Although CSF sTREM2 levels are not raised in FTD overall or in a particular clinical subtype of FTD, levels are raised in familial FTD associated with GRN mutations and in FTD syndromes due to AD pathology. Because CSF sTREM2 levels correlate with a marker of neuronal injury (T-tau), sTREM2 should be explored as a biomarker of disease intensity in future longitudinal studies of FTD

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Reliability of upright posture measurements in primary school children

    Get PDF
    BACKGROUND: Correct upright posture is considered to be a measure of good musculoskeletal health. Little is known about the usual variability of children's upright standing posture. The aim of this study was to assess differences between repeated measures of upright posture in a group of primary school children. METHODS: Sagittal plane photographs of usual, relaxed upright standing posture of 38 boys and girls aged 5–12 years were taken twice within an hour. Reflective markers were placed over the canthus, tragus, C7 spinous process, greater trochanter and lateral malleolus. Digitising software was used to calculate the x,y plane coordinates, from which five postural angles were calculated (trunk, neck, gaze, head on neck, lower limb). Height, weight, motor control estimates (as measured by the Brace Tests) and presence of recent pain were recorded for each child, and the association between the first test measure of posture angles and these factors was assessed using linear regression and ANOVA models. Multiple ANOVA models were applied to analyse the effect of repeated testing, and significant predictors on the angles. RESULTS: Four of the five postural angles (trunk, neck, head on neck, lower limb) were significantly influenced by age. As age was strongly associated with height (r(2 )= 0.84) and moderately associated with weight and motor control (r(2 )= 0.67, 0.56 respectively), these developmental parameters may well explain the age effect on angles. There was no relationship between age and pain reported on either the testing day, or recently, and there was no gender influence on any angle. There was no significant effect of repeated testing on any angle (ICC>0.93). None of the hypothesized predictors were associated with differences in angles from repeated testing. CONCLUSION: This study outlined the variability of relaxed upright standing posture of children aged 5–12 years, when measured twice in an hour. Age influenced the size of the angles but not the variability. While the subject numbers in this study are small, the findings provide useful information on which further studies in posture and its development in pre-adolescent children can be based

    Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children

    Get PDF
    Following recent advances in the analysis of centre-of-pressure (COP) recordings, we examined the structure of COP trajectories in ten children (nine in the analyses) with cerebral palsy (CP) and nine typically developing (TD) children while standing quietly with eyes open (EO) and eyes closed (EC) and with concurrent visual COP feedback (FB). In particular, we quantified COP trajectories in terms of both the amount and regularity of sway. We hypothesised that: (1) compared to TD children, CP children exhibit a greater amount of sway and more regular sway and (2) concurrent visual feedback (creating an external functional context for postural control, inducing a more external focus of attention) decreases both the amount of sway and sway regularity in TD and CP children alike, while closing the eyes has opposite effects. The data were largely in agreement with both hypotheses. Compared to TD children, the amount of sway tended to be larger in CP children, while sway was more regular. Furthermore, the presence of concurrent visual feedback resulted in less regular sway compared to the EO and EC conditions. This effect was less pronounced in the CP group where posturograms were most regular in the EO condition rather than in the EC condition, as in the control group. Nonetheless, we concluded that CP children might benefit from therapies involving postural tasks with an external functional context for postural control
    corecore