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Abstract 

Background: Chronic glial dysfunction may contribute to the pathogenesis of frontotemporal dementia (FTD). 

Cerebrospinal fluid (CSF) levels of glia-derived proteins YKL-40 and chitotriosidase are increased in Alzheimer’s 

disease (AD) but have not been explored in detail across the spectrum of FTD.  

Methods: We investigated whether CSF YKL-40 and chitotriosidase levels differed between FTD patients and 

controls, across different clinical and genetic subtypes of FTD, and between individuals with a clinical FTD 

syndrome due to AD versus non-AD (FTLD) pathology (based on CSF neurodegenerative biomarkers). Eighteen 

healthy controls and 64 people with FTD (behavioural variant FTD, n=20; primary progressive aphasia (PPA), n=44: 

nfvPPA, n = 16, svPPA, n=11, lvPPA, n =14, PPA-NOS, n=3) were included. 10/64 had familial FTD, with mutations 

in GRN (n=3), MAPT (n=4), or C9orf72 (n=3). 15/64 had neurodegenerative biomarkers consistent with AD 

pathology. Levels were measured by immunoassay and compared using multiple linear regressions. We also 

examined relationships of YKL-40 and chitotriosidase with CSF total tau (T-tau), phosphorylated tau 181 (P-tau) 

and β-amyloid 1-42 (Aβ42), with each other, and with age and disease duration. 

Results: CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-

40), compared with controls. GRN mutation carriers had higher levels of both proteins than controls and C9orf72 

expansion carriers, and YKL-40 was higher in MAPT mutation carriers than controls. Individuals with underlying 

AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD 

pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and Aβ42, 

and with each other, depending on clinical syndrome and underlying pathology. CSF YKL-40 but not 

chitotriosidase was associated with age, but not disease duration. 

Conclusion: CSF YKL-40 and chitotriosidase levels are increased in individuals with clinical FTD syndromes, 

particularly due to AD pathology. In a preliminary analysis of genetic groups, levels of both proteins are found to 

be highly elevated in FTD due to GRN mutations, while YKL-40 is increased in individuals with MAPT mutations. 

As glia-derived protein levels generally correlate with T-tau and P-tau levels, they may reflect the glial response 

to neurodegeneration in FTLD.  
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Background 

Frontotemporal dementia (FTD) causes progressive changes in behaviour (behavioural variant FTD, 

bvFTD), or language (primary progressive aphasia, PPA) and some individuals have concurrent motor 

neuron disease (MND) or an atypical parkinsonian disorder such as progressive supranuclear palsy 

(PSP) or corticobasal syndrome (CBS) [1]. Pathologically, most individuals have frontotemporal lobar 

degeneration (FTLD) with tau inclusions (FTLD-tau) or transactive response DNA binding protein-43 

(TDP-43) inclusions (FTLD-TDP), although some, particularly those with logopenic variant PPA 

(lvPPA), have underlying Alzheimer’s disease (AD) pathology [2,3]. Around two thirds of cases are 

sporadic, but one third are familial, associated most commonly with mutations in progranulin (GRN), 

microtubule associated protein tau (MAPT) or chromosome 9 open reading frame 72 (C9orf72) [1]. 

Biomarkers are currently lacking that reliably differentiate the pathological changes in vivo in sporadic 

FTD, can predict onset of disease and guide timely initiation of future treatments in familial FTD, or 

assess treatment response in future clinical trials.  

 

There is growing evidence that chronic neuroinflammation plays a role in FTD, especially in familial 

FTD secondary to mutations in GRN [4–7], but also in people with MAPT [8–10] and C9orf72 [11–16] 

mutations, and in sporadic FTD [6,17–20]. Histological studies of brain tissue from patients with FTD 

implicate excessive microglial activation [9,10,21–29] and astrocytosis [26,28] but also microglial 

dystrophy [21] in disease pathogenesis. Although microglia and astrocytes may initially be helpful in 

neurodegenerative diseases through phagocytosis of aggregated proteins and dying neurons and 

remodeling of synapses, over time they may become harmful, through chronic activation and release 

of pro-inflammatory cytokines and other toxic proteins. Accelerated microglial senescence, dysfunction 

and reduced phagocytic and supportive capacity may also exacerbate neuronal demise [30]. 

Inflammatory markers associated with these processes, particularly proteins derived from glial cells, 

may be detectable and altered in blood or CSF, and could be useful biomarkers of chronic 

neuroinflammation and disease pathogenesis in FTD.  
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Although it is now well-established that levels of several glia-derived proteins are raised in CSF during 

various stages of neurodegenerative diseases such as AD or MND, fewer studies have explored how 

levels are altered in FTD. Three glia-derived proteins have been most extensively explored in 

neurodegenerative diseases: soluble triggering receptor expressed on myeloid cells 2 (sTREM2), YKL-

40 (also known as chitinase-3-like protein 1, CHI3L1), and chitotriosidase (also known as CHIT1). 

TREM2 is an innate immune receptor expressed by myeloid cells, including microglia and peripheral 

macrophages [31], and is involved in phagocytosis, survival and migration of microglia. A soluble 

fragment (sTREM2) is cleaved and detectable in CSF and blood [32]. YKL-40 is a pro-inflammatory 

molecule released predominantly by activated astrocytes (and to a lesser extent by microglia) into the 

CSF and by activated peripheral macrophages into blood, which stimulates production of cytokines, 

and regulates macrophage, microglial and astrocytic function, endothelial cell migration and tumour 

angiogenesis [33]. Chitotriosidase is a chitin-degrading enzyme expressed by activated microglia (but 

not by astrocytes) in CSF [34], and by peripheral macrophages in blood [35]. It induces activation of a 

pro-inflammatory microglial phenotype [34] and has a range of other immunomodulatory functions, 

including stimulation of chemotactic factors, fibrosis and tissue remodeling [36].  

 

We have recently shown that although CSF sTREM2 levels are not raised in a mixed cohort of 

individuals with a diagnosis of FTD compared with controls, they are higher in certain subgroups of 

FTD, such as individuals with a clinical syndrome consistent with FTD but underlying AD pathology, 

and in symptomatic GRN mutation carriers [37]. This has implications for the use of glia-derived 

proteins as CSF biomarkers in clinical trials for a condition as diverse as FTD. CSF YKL-40 and 

chitotriosidase levels have not been compared across all the clinical and the main genetic subtypes of 

FTD or correlated within FTD subgroups with levels of validated CSF neurodegenerative biomarkers 

used in clinical practice: total tau (T-tau), phosphorylated tau-181 (P-tau) and amyloid beta 1-42 (Aβ42).  
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This study therefore set out to examine how CSF YKL-40 and chitotriosidase levels differ between 

individuals with a clinical diagnosis of FTD and cognitively normal controls, and between different 

clinical and genetic subtypes of FTD. We also aimed to clarify how CSF YKL-40 and chitotriosidase 

levels differ between individuals with similar clinical FTD syndromes but different underlying 

pathologies: FTLD versus AD, based on the CSF tau/Aβ42 biomarker profile.  We also aimed to 

establish whether YKL-40 or chitotriosidase levels are associated with levels of  T-tau, P-tau or Aβ42 in 

CSF, and to ascertain the relationship between YKL-40 and chitotriosidase levels, across the spectrum 

of FTD. Finally, we aimed to assess how YKL-40 and chitotriosidase levels are associated with 

parameters that may affect glial function and are relevant for future clinical trials, such as age, disease 

duration and sex. 

 

Methods 

Participants 

The cohort consisted of 64 consecutively recruited individuals with dementia meeting consensus 

diagnostic criteria for either bvFTD [38] or PPA [39], and 18 healthy cognitively normal controls (as per 

[37], with the addition of an extra control, recruited subsequent to that study). Cases with additional 

motor neurone disease were not included in the study. The study was approved by the local NHS 

Research Ethics Committee and the Health Research Authority. All individuals gave informed written 

consent. 

 

Within the patient group, 20 had bvFTD, 16 nonfluent variant PPA (nfvPPA), 11 semantic variant PPA 

(svPPA), 14 logopenic variant PPA (lvPPA) and three had a PPA syndrome not otherwise specified 

(PPA-NOS; not fulfilling criteria of any of the other PPA phenotypes). All participants with FTD were 

genetically screened for all known FTD causative mutations, including the C9orf72 expansion. Ten 

individuals were found to have familial FTD, with mutations in GRN (n=3: two C31fs, one S78fs), MAPT 

(n=4: two 10+16, two R406W) or C9orf72 (n=3). All familial cases had a diagnosis of bvFTD except two 
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individuals with GRN mutations who had nfvPPA. Demographics of the cohort are displayed in Table 

1. Disease duration was calculated as the time, in years, between age at clinical onset of symptoms and 

date of CSF collection. 

 

There was no difference in age at CSF collection between the FTD and control groups (P = 0.854), but 

the svPPA subgroup were younger than the nfvPPA (P = 0.018) and lvPPA (P = 0.031) subgroups. There 

was no significant difference in age between any of the genetic subgroups or when compared with 

controls. There was a higher proportion of males in the FTD group than in the control group (P = 0.014), 

and a higher proportion of males in the bvFTD subgroup versus all other clinical subgroups and 

controls (P = 0.006), other than the PPA-NOS group, where all 3 participants were male (Table 1). There 

was no significant difference in disease duration between any of the clinical subgroups (P = 0.105). 

 

CSF collection, processing and biomarker analysis 

For all participants, CSF was collected and stored using standardised procedures [37,40]. Samples were 

collected by lumbar puncture in polypropylene tubes, which were immediately transferred to the 

laboratory. Samples were then centrifuged and the supernatant aliquoted and stored at − 80 °C within 

30 minutes of arrival. Levels of T-tau, P-tau and Aβ42 were measured in CSF using commercially 

available INNOTEST sandwich enzyme-linked immunosorbent assays (Fujirebio Europe, Gent, 

Belgium).  

 

CSF YKL-40 levels were measured using the commercially available Human YKL-40 Immunoassay Kit 

on the Mesoscale Discovery (MSD, Rockville, MD, USA) platform, with all samples assayed in duplicate 

and measured on the same day by a single operator using the same reagents.  Briefly, CSF samples were 

diluted 1 in 400 with dilution buffer, and the provided standard reconstituted 1 in 20 using dilution 

buffer and serially diluted 1 in 4 to produce concentrations ranging from 50,000 to 12.2 pg/mL. 150 μL 

blocking agent was added to each well, and plates sealed and incubated at room temperate shaking at 
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500 rpm for 1 hour. Plates were washed 3 times with 300 μL per well of PBS-T, then 50 μL of either 

diluted CSF sample, standard or blank (dilution buffer) was added to each well (pre-coated with 

capture antibody), and plates were sealed and incubated at room temperate shaking at 500 rpm for 2 

hours. Plates were washed 3 times with 300 μL of PBS-T and 25 μL of detection antibody solution 

(diluted to 1 in 50) added per well, then sealed and incubated at room temperate shaking at 500 rpm 

for 2 hours. After a further 3 washes with PBS-T, 150 μL of Read Buffer T (diluted 1 in 2) was added to 

each well and the plate immediately analysed on the SECTOR Imager using a 4-parameter logistic 

model with averaged replicates. 

 

CSF chitotriosidase levels were measured using the commercially available CircuLex Human ELISA 

Kit (MBL International, MA, USA) with all samples assayed in duplicate and measured on the same 

day by a single operator using the same reagents. Briefly, CSF samples were diluted 1 in 5 with dilution 

buffer and the provided standard was diluted to produce concentrations ranging from 3600 to 56.25 

pg/mL. 100 μL of either diluted CSF sample, standard or blank (dilution buffer) was added to each well, 

and plates sealed and incubated at room temperature for 1 hour shaking at 300 rpm, then washed 4 

times with 350 μL wash buffer. 100 μL of HRP conjugated detection antibody was added and plates 

sealed and incubated at room temperature for 1 hour shaking at 300 rpm, then washed 4 times with 350 

μL wash buffer. 100 μL of substrate agent was added to each well and plates were sealed, covered in 

foil and incubated for 15 minutes at room temperature shaking at 300 rpm. Finally, 100 μL of stop 

solution was added to each well in the same order as the substrate agent, and plate absorbance read 

immediately on a microplate reader at dual wavelengths of 450/540 nm. The concentration of 

chitotriosidase in each sample was calculated using a four-parameter fitting method based on the 

standard curve, using values which were blank corrected and averaged over replicates. 

 

Participant stratification 

We performed three separate group comparisons: 
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1. By clinical syndrome, comparing bvFTD, nfvPPA, svPPA, lvPPA, PPA-NOS, and controls. 

2. By genetic group, comparing those with GRN mutations, MAPT mutations, C9orf72 

expansions, and controls 

3. By pathological group, comparing those with likely Alzheimer’s disease, those with likely 

FTLD pathology, and controls. We used levels of CSF T-tau and Aβ42 to calculate the T-

tau/Aβ42 ratio for each participant to perform this stratification, classifying all individuals with 

dementia based on the CSF T-tau/Aβ42 ratio, with a cut-off of ≥1.0 (AD biomarker-positive, 

indicating likely AD) and <1.0 (AD biomarker-negative, indicating likely FTLD) [37,40]; Table 

2. The cognitively normal controls formed a comparison group with all having a CSF T-

tau/Aβ42 ratio of <1.0. No significant difference in age at CSF was seen between these three 

groups (P > 0.050), but disease duration at CSF was lower in the AD biomarker-positive 

subgroup than the AD biomarker-negative subgroup (P = 0.037). There were significantly more 

males in the AD biomarker-negative subgroup (73.4%) than in controls (38.9%) and the AD 

biomarker-positive subgroup (60.0%) (P = 0.032).  

 

Statistical analysis 

For YKL-40, levels were detectable in CSF of all individuals, so analyses were performed on all 18 

controls and 64 individuals with FTD. For chitotriosidase, three individuals (one control, one sporadic 

bvFTD and one sporadic nfvPPA) had persistently undetectable levels of chitotriosidase in CSF, despite 

assaying their samples again at 1 in 5 dilution and using neat CSF. Approximately 6% of the population 

possess a homozygous 24-bp duplication in exon 10 of the CHIT1 gene which leads to a complete 

enzymatic deficiency of chitotriosidase [41]. These three individuals were very likely to be carriers of 

this mutation and their levels would bias comparisons of the groups if included (or assigned the lower 

limit of detection), hence they were excluded from the chitotriosidase analysis, leaving 17 controls and 

62 individuals with dementia.  
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All analyses were carried out using STATA14 (Stata Corporation, College Station, TX), with a 

significance threshold of P<0.05. Shapiro Wilk tests of raw values and Q-Q plots of residuals from 

multivariable linear regressions were used to test assumptions of normality. 

 

Assessment of residuals in multivariable linear regression analyses of YKL-40 across groups revealed 

these were normally distributed and so met the assumptions required for parametric multivariable 

linear regression analysis. However, the same assessment for chitotriosidase revealed that residuals 

were not normally distributed, and so chitotriosidase values were natural log (Ln) transformed, which 

then met assumptions required for multivariable linear regression analysis. Multivariable linear 

regressions were used to compare YKL-40 and Ln(chitotriosidase) levels between groups (FTD versus 

controls and between clinical, pathological and genetic subgroups and versus controls), adjusting for 

age and sex in all analyses, and for disease duration in analyses involving comparison of disease groups 

(but not for genetic subgroups due to small sample size). Post hoc pairwise tests were used to compare 

individual subgroups. 

 

In each group (except genetic subgroups due to small sample size), multivariable linear regressions 

were used to investigate the association between:  

a) YKL-40 or Ln(chitotriosidase) levels and levels of CSF T-tau, P-tau and Aβ42, adjusted for age and 

sex (for the control group) and for age, sex and disease duration (for disease groups). Due to a non-

linear relationship between T-tau levels and YKL-40 and chitotriosidase levels, T-tau values were 

Ln transformed and all regression analyses performed using Ln(T-tau).  

b) Ln(chitotriosidase) and Ln transformed YKL-40 levels (due a to non-linear relationship between 

raw values), adjusted for age and sex, and for disease groups, disease duration as well.  

c) YKL-40 or Ln(chitotriosidase) and both age at CSF collection (adjusted for sex in the control group 

and both sex and disease duration in disease groups) and disease duration at CSF collection (for 

disease groups, adjusted for age and sex).  
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Mann-Whitney U tests were used to compare protein levels between males and females in each group 

(but not within genetic subgroups due to small sample size).  

 

Results 

CSF YKL-40 and chitotriosidase levels are higher in certain FTD syndromes than controls 

CSF YKL-40 levels were higher overall in individuals with a clinical FTD syndrome than in controls 

(mean (SD) = 134 (53) versus 108 (30) ng/ml, P = 0.019; Fig. 1a, Tables 1 and 3). However, this varied by 

clinical subtype (Fig. 1b; Tables 1 and 3): YKL-40 levels were highest in individuals with nfvPPA (149 

(57) ng/ml, P = 0.021 versus controls) and lvPPA (147 (64) ng/ml, P = 0.036). Although individuals with 

PPA-NOS had similarly high YKL-40 levels (146 (45) ng/ml), the small size of this group meant that the 

difference from controls was not statistically significant (P = 0.124). No significant differences were seen 

between YKL-40 levels in bvFTD or svPPA subgroups compared with controls, and there were no 

significant differences between clinical subgroups  (Fig. 1b).   

 

CSF chitotriosidase levels were also significantly higher overall in individuals with a clinical FTD 

syndrome compared with controls (Fig. 2a, Tables 1 and 3; FTD: mean (SD) = 3795 (4358) versus 

controls: 1762 (1098) pg/ml, P = 0.038). Although a trend towards higher levels was seen in all clinical 

subgroups (Fig. 2b; Tables 1 and 3), this only reached statistical significance in lvPPA (5240 (5039) 

pg/ml, P = 0.017) and there were no significant differences between clinical subgroups.  

 

CSF YKL-40 and chitotriosidase levels differ by underlying gene mutation in FTD 

GRN mutation carriers had significantly higher levels of YKL-40 compared with controls (mean (SD) = 

226 (42) versus 108 (30) ng/ml, P <0.001; Fig. 1c) and compared with C9orf72 expansion carriers (99 (40) 

ng/ml, P = 0.001), with a trend to a higher level compared with MAPT mutation carriers (150 (69) ng/ml, 
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P = 0.066). MAPT mutation carriers also had significantly higher YKL-40 levels than controls (P = 0.046; 

Fig. 1c), with a trend to higher levels compared with C9orf72 expansion carriers (P = 0.055).  

 

GRN mutation carriers had much higher levels of chitotriosidase compared with controls (mean (SD) = 

9492 (5143) versus 1762 (1098) pg/ml, P <0.001), MAPT mutation carriers (2770 (1664) pg/ml, P = 0.034) 

and C9orf72 expansion carriers (1688 (1345) pg/ml, P = 0.002; Fig. 2c). However, in contrast to YKL-40, 

MAPT mutation carriers had more similar chitotriosidase levels to controls (P = 0.104) and C9orf72 

expansion carriers (P = 0.136). 

 

CSF YKL-40 and chitotriosidase levels are higher in FTD syndromes due to underlying AD pathology 

 Levels of both YKL-40 and chitotriosidase were highest in the AD biomarker-positive subgroup (YKL-

40 mean (SD) = 163 (67) ng/ml; chitotriosidase = 5975 (4616) pg/ml) with significantly higher levels of 

both proteins in this subgroup compared with the AD biomarker-negative subgroup (YKL-40: 125 (45) 

ng/ml; P = 0.048, Fig. 1d; chitotriosidase: 3336 (4121) pg/ml, P = 0.007, Fig. 2d; Tables 2 and 3) and also 

compared with controls (YKL-40: 108 (30) ng/ml, P = 0.001, Fig. 1d; chitotriosidase: 1762 (1098) pg/ml, 

P<0.001, Fig. 2d; Tables 2 and 3). There was a non-significant trend to a higher level of each protein in 

the AD biomarker-negative subgroup versus controls (YKL-40: P = 0.091, Fig. 1d; chitotriosidase: P = 

0.194, Fig. 2d; Tables 2 and 3). 

 

CSF YKL-40 and chitotriosidase are variably associated with T-tau, P-tau and Aβ42 

Associations between levels of CSF neurodegenerative biomarkers T-tau, P-tau and Aβ42 and levels of 

CSF YKL-40 (Fig. 3) or chitotriosidase (Fig. 4) varied according to clinical diagnosis and CSF biomarker 

profile (i.e. underlying pathology). In controls, CSF YKL-40 and chitotriosidase were not significantly 

associated with any biomarker. In the overall FTD (dementia) group, CSF YKL-40 and chitotriosidase 

levels were significantly positively associated with both T-tau and P-tau levels, and there was a small, 

negative association of chitotriosidase with Aβ42 levels. For YKL-40: T-tau β (95% CI) = 42.996 (24.878, 
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61.113), P<0.001 (Fig. 3a); P-tau β = 0.722 (0.339, 1.105, P<0.001 (Fig. 3b); Aβ42 β = -0.003 (-0.051, 0.045), 

P = 0.907 (Fig. 3c). For chitotriosidase: T-tau β = 0.668 (0.306, 1.030), P<0.001 (Fig. 4a); P-tau β = 0.009 

(0.001, 0.016), P = 0.028 (Fig. 4b); Aβ42 β = -0.0009 (-0.0017, -0.0002), P = 0.044 (Fig. 4c).  

 

Most clinical subgroups showed positive slopes for the association between YKL-40 and T-tau or P-tau 

levels (Fig. 3d and 3e), but this only reached significance in certain subgroups. YKL-40 levels were 

significantly positively associated with T-tau levels in bvFTD (β (95% CI) = 109.3 (80.6, 138.1) P<0.001) 

and nfvPPA (β = 69.9 (21.2, 118.6), P=0.009), and with P-tau levels in bvFTD (β = 1.746 (0.607, 2.885), P 

= 0.005) and lvPPA (β = 1.020 (0.199, 1.841), P = 0.020). YKL-40 levels were not associated with Aβ42 

levels in most subgroups, except in lvPPA (Fig. 3f), where there was a significant positive association 

(β = 0.274 (0.043, 0.506), P = 0.025). Chitotriosidase levels were positively associated with T-tau or P-tau 

levels only in certain clinical subgroups (Fig. 4d and 4e). There was a significant association between 

chitotriosidase and T-tau levels in bvFTD (β = 1.312 (0.132, 2.491) P = 0.003) and lvPPA (β = 0.937 (0.231, 

1.642), P = 0.015) and with P-tau levels in lvPPA (β = 0.014 (0.001, 0.027), P = 0.043). Although most 

clinical subgroups except lvPPA had borderline negative associations between chitotriosidase and 

Aβ42 levels, these did not reach significance (Fig. 4f).  

 

Although both pathological subgroups (AD biomarker-positive and AD biomarker-negative) and 

controls seemed to have positive associations between YKL-40 and T-tau and P-tau levels (Fig. 3g and 

3h), associations were only significant in the AD biomarker-negative subgroup: T-tau β (95% CI) = 

62.064 (37.676, 86.451), P<0.001; P-tau β = 1.055 (0.261, 1.849) P = 0.010). The AD biomarker-positive 

subgroup had a significant, positive association between YKL-40 and Aβ42 levels (β = 0.226 (0.011, 

0.442), P = 0.041, Fig. 3i). There were no significant associations between chitotriosidase levels and T-

tau, P-tau or Aβ42 levels in any pathological subgroup or controls (Fig. 4g-i), although there was a trend 

towards a positive association between chitotriosidase and T-tau in the AD biomarker-negative 

subgroup (β = 0.631 (-0.003, 1.265); P = 0.051, Fig. 4g). 
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CSF chitotriosidase is positively associated with YKL-40 in FTD 

CSF chitotriosidase levels were positively associated with YKL-40 levels within the whole cohort (β 

(95% CI) = 1.008 (0.507, 1.509), P<0.001) and in the overall FTD (dementia) group (β = 1.094 (0.508, 1.680), 

P<0.001, Fig. 5a) but not in controls (β = -0.203 (-1.605, 1.199), P = 0.774, Fig. 5a). Levels of both proteins 

were also positively associated in most clinical subgroups (Fig. 5b) but reached significance only in 

bvFTD β = 1.369 (0.399, 2.340), P = 0.007) and nfvPPA (β = 1.388 (0.034, 2.742) P = 0.045). Levels were 

positively associated in the AD biomarker-negative subgroup (β = 1.226 (0.556, 1.896), P = 0.001; Fig. 5c) 

but this did not reach significance in the AD biomarker-positive subgroup (β = 0.275 (-0.781, 1.332), P = 

0.604; Fig. 5c).  

 

CSF YKL-40 but not chitotriosidase levels are associated with age 

CSF YKL-40 levels were positively associated with age at CSF in the whole cohort (β (95% CI) = 1.989 

(0.352, 3.625), P = 0.018). A similar magnitude of association was seen in the FTD group (β = 1.864 (0.059, 

3.670), P = 0.043, Fig. 6a) and the control group (β = 2.467 (-1.074, 6.007), P = 0.169; Fig. 6a). Although 

most of the clinical subgroups (apart from nfvPPA and PPA-NOS; Fig. 6b) and both pathological 

subgroups appeared to have a positive slope for the association between YKL-40 levels and age, none 

reached significance. Chitotriosidase levels were not significantly associated with age in either the 

whole cohort (β = 0.007 (-0.024, 0.378), P = 0.661) or the FTD (β = 0.004 (-0.064, 0.073), P = 0.904; Fig. 6c) 

or control (β = 0.008 (-0.026, 0.042) P = 0.628; Fig. 6c) groups, or in any of the clinical (Fig. 6d) or 

pathological subgroups.  

 

There were no significant associations between either YKL-40 (Fig. 7a) or chitotriosidase  (Fig. 7c) levels 

and disease duration in the FTD group (YKL-40: β = -1.874 (-5.403, 1.655), P = 0.292; chitotriosidase: β = 

-0.016 (-0.082, 0.051) P = 0.631) or within any of the clinical (Fig. 7b and 7d) or pathological subgroups.  
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CSF YKL-40 and chitotriosidase levels did not differ significantly between males and females in the 

whole cohort or in FTD or control groups, or in any of the clinical or pathological subgroups. 

 

Discussion 

This study shows that levels of two glia-derived proteins, YKL-40 and chitotriosidase, are raised in the 

CSF of individuals with a clinical diagnosis of FTD compared with controls. However, levels are not 

consistently raised across all clinical subtypes, with highest YKL-40 levels in lvPPA and nfvPPA, and 

highest chitotriosidase levels in lvPPA.  Individuals with a clinical syndrome consistent with FTD but 

a CSF neurodegenerative biomarker profile consistent with AD pathologically have particularly high 

levels of both proteins compared with controls, and higher levels than individuals with a diagnosis of 

FTD and non-AD like CSF biomarkers (likely FTLD), who have a non-significant trend to higher levels 

than controls. In a smaller subgroup analysis, both YKL-40 and chitotriosidase levels are highly 

elevated in FTD due to GRN mutations and YKL-40 levels are also elevated in FTD due to MAPT 

mutations. Associations between YKL-40 and chitotriosidase levels, and with T-tau, P-tau and Aβ42 

levels, vary depending on clinical diagnosis and CSF biomarker profile. CSF YKL-40 levels, but not 

chitotriosidase levels, are associated with age, and neither are associated with disease duration. 

 

Raised CSF YKL-40 levels have previously been demonstrated in several FTD cohorts versus controls 

[33,42–49], including in familial FTD [48], and compared with individuals with primary psychiatric 

diagnoses [50]. In contrast, few studies have examined CSF chitotriosidase levels in FTD. One study 

found higher chitotriosidase levels in FTD (in cases without CSF biomarker or pathological 

confirmation) compared with healthy controls [51], but another found similar levels to controls in a 

mixed familial FTD cohort [48].  Our results and results from previous biomarker and histological 

studies suggest significant glial activation is present in individuals with clinical diagnoses of FTD. 

However, previous biomarker studies have included individuals with different clinical syndromes, 

gene mutations and underlying pathologies (or co-pathologies) within FTD cohorts. This has limited 
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our understanding of how glia-derived proteins vary in CSF across the spectrum of FTD, and how these 

biomarkers may be useful for clinical trials targeting different FTD subgroups.  Our study therefore 

aimed to elucidate how levels of YKL-40 and chitotriosidase vary across the spectrum of FTD by 

examining these proteins at the subgroup level. 

 

CSF YKL-40 and chitotriosidase levels were significantly raised in several, but not all, clinical subtypes 

of FTD and there was significant variability in levels within clinical subgroups. The highest YKL-40 

levels were seen in lvPPA and nfvPPA, but the PPA-NOS subgroup also had high levels (likely not 

reaching significance when compared with controls due to small sample size). The highest 

chitotriosidase levels were in lvPPA, but other clinical subgroups showed non-significant trends 

towards higher levels than controls. There were no significant differences in levels between clinical 

subgroups. Very few studies have explored this previously: one study examining CSF YKL-40 levels in 

bvFTD, nfvPPA, svPPA, CBS and PSP compared with controls found raised levels in all syndromes 

(except PSP) and no significant differences between FTD subgroups, although individuals with lvPPA 

were not delineated from an accompanying typical AD group [43]. A study of CSF chitotriosidase levels 

in FTD found no significant difference between bvFTD and PPA, or between PPA subtypes, although 

PPA subgroups were much smaller than in our cohort and lacked biomarker or pathological correlation 

[51]. Different clinical subtypes of FTD may have widely differing pathologies, co-pathologies and 

disease mechanisms and hence differing degrees of glial activation which could affect YKL-40 and 

chitotriosidase release. In particular, patients with MND have much higher CSF YKL-40 levels 

[46,48,52–55] and CSF chitotriosidase levels or activity [34,48,51,54–57] than controls, and higher 

chitotriosidase levels than in FTD [51], so our study did not include individuals with FTD-MND to 

avoid confounding results. The majority (78%) of our lvPPA subgroup had a CSF biomarker profile 

consistent with AD (rather than FTLD), and our nfvPPA subgroup contained two individuals with AD-

like CSF biomarkers and two individuals with GRN mutations. In contrast, most individuals with 

bvFTD or svPPA had non AD-like biomarkers and either a smaller percentage of (bvFTD) or no GRN 
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mutations. We therefore hypothesise that the particularly high YKL-40 and chitotriosidase levels in 

lvPPA and high YKL-40 levels in nfvPPA may be due to more pronounced glial activation in 

individuals with underlying AD pathology and GRN mutations. 

 

We were able to explore this further by stratifying our FTD cohort by CSF neurodegenerative biomarker 

profile (T-tau/Aβ42 ratio) rather than by clinical diagnosis. This was helpful in a previous study to 

demonstrate that CSF sTREM2 levels are raised in individuals with a clinical diagnosis of an FTD 

syndrome but AD-like CSF biomarkers, particularly lvPPA, compared with controls, but not in those 

with likely FTLD [37]. By repeating this approach, we confirm that there are also much higher levels of 

YKL-40 and chitotriosidase in the CSF of individuals with an FTD syndrome but AD-like CSF 

biomarkers compared with controls, and higher levels than in individuals with non AD-like CSF (i.e. 

likely FTLD). Patients with typical amnestic AD have elevated levels of glia-derived proteins in CSF 

compared with controls, including YKL-40 [42,47,66–69,58–65], sTREM2 [70–73], chitotriosidase 

[51,59,74,75], glial fibrillary acidic protein [76–78] and S100beta [79–81]. This suggests there is 

pronounced astrocytic and microglial activation in association with AD pathology. The soluble 

phosphorylated tau species found in patients with amnestic AD are highly toxic to microglia, resulting 

in pronounced microglial dysfunction and dystrophy [82] and tau oligomers co-localise with microglia, 

astrocytes and pro-inflammatory cytokines in patients with AD and FTLD [26]. Patients with clinical 

FTD but underlying AD pathology would therefore also be expected to have very high levels of glia-

derived proteins compared with controls, and data from this study and our previous study [37] support 

this.  

 

Although CSF YKL-40 and chitotriosidase levels did not differ significantly between individuals with 

FTD and non AD-like CSF biomarkers (likely FTLD) and controls, there was a trend towards higher 

levels of both proteins in this group. There was also significant intra-group variability in protein levels, 

particularly for chitotriosidase, suggesting glial activation may vary considerably according to the 
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FTLD subtype or disease mechanism. Other studies have explored this by stratifying pathologically 

confirmed FTLD groups and found higher CSF YKL-40 levels in both FTLD-tau and FTLD-TDP than 

in individuals with subjective memory impairment, and in FTLD-tau compared with AD [43,44,49]. 

One study found higher YKL-40 levels in ‘pure’ FTLD-tau (excluding AD pathology) than in patients 

with FTLD-TDP or AD [44], although others have found higher levels in FTLD-TDP (but not FTLD-tau) 

compared with controls [43,45]. Differences in the number of genetic FTD cases in FTLD subgroups or 

inclusion of individuals with co-pathology are likely to have contributed to these disparities between 

studies. FTLD-TDP cohorts have included patients with concurrent MND [45], or patients with GRN 

mutations [43] who we demonstrate have very high levels of both YKL-40 and chitotriosidase. FTLD-

tau cohorts have included differing numbers of MAPT cases, who we show have particularly raised 

YKL-40 levels. This variability in levels according to pathology or disease mechanism has implications 

for the use of inflammatory proteins as fluid biomarkers in both research studies and clinical trials for 

a disease as pathologically diverse as FTD. It also emphasizes the importance of detailed stratification 

of cohorts or use of CSF biomarker or pathological correlation in biomarker studies of FTD. 

 

Although we were unable to divide our cohort into FTLD subtypes due to a lack of cases with 

pathological confirmation, we were able to include a small number of individuals with familial FTD, 

enabling an exploratory analysis of CSF YKL-40 and chitotriosidase levels in a small number of 

individuals with known pathology (FTLD-TDP: GRN or C9orf72 mutations or FTLD-tau: MAPT 

mutations), and also differing disease mechanisms despite similar pathology (GRN and C9orf72 

mutations). GRN mutation carriers had very elevated YKL-40 and chitotriosidase levels and MAPT 

mutation carriers had high YKL-40 levels compared with controls. Very few studies have examined 

glia-derived CSF biomarkers in individuals with genetic FTD. In a recent study, CSF YKL-40 levels, but 

not CSF chitotriosidase levels, were significantly elevated in 23 familial FTD cases (combining C9orf72, 

GRN or MAPT mutation carriers) compared with controls [48]. However, genetic subgroup analyses 

were not performed to analyse differences between mutation types and the genetic group contained a 
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significant proportion of patients with C9orf72 expansions (15/23) (who we found to have similar levels 

of both proteins to controls), which may have influenced results. The highly elevated levels of YKL-40 

and chitotriosidase in our GRN mutation group is consistent with multiple studies showing elevated 

levels of other inflammatory markers in GRN mutation carriers [6,19,37,83–85]. GRN haploinsufficiency 

results in significant microglial dysfunction and activation [4,21,86], which could lead to excessive YKL-

40 and chitotriosidase release as a mutation-specific effect, exacerbated by the general glial response to 

neurodegeneration, perhaps explaining the higher levels in GRN than C9orf72 mutation carriers. 

Patients with heterozygous GRN mutations also display significant lysosomal dysfunction [87,88], 

which could exacerbate chitotriosidase release into CSF. Plasma [35] and CSF [89,90] chitotriosidase are 

highly elevated in the lysosomal storage disorder Gaucher’s disease, where macrophages are 

chronically activated [35,91] and plasma levels are already used for monitoring treatment response [92]. 

Serum YKL-40 levels are also raised (and serum GRN levels are reduced) in Gaucher’s disease, and 

recombinant GRN reduces serum YKL-40 levels in GRN knockout mice and in fibroblasts from patients 

with Gaucher’s disease [91]. This strengthens the evidence for a link between GRN haploinsufficiency, 

glial activation, and lysosomal dysfunction, which could be detectable at an early stage, and reversible, 

in GRN mutation carriers.  

 

The high YKL-40 levels observed in MAPT carriers are consistent with elevated CSF YKL-40 levels in 

FTLD-tau [43,49] and colocalization of activated astrocytes with tau oligomers in P301S MAPT mouse 

models [26]. There are also many activated microglia surrounding phosphorylated-tau positive 

neurons in MAPT P301S mice [8] or patients with P301S mutations [9] and pronounced frontotemporal 

microglial activation in MAPT mutation carriers [10]. This suggests that certain FLTD-tau pathologies, 

as well as tau in AD, may promote YKL-40 release. CSF chitotriosidase levels were also slightly raised 

in MAPT carriers but this did not reach significance compared with controls. This may have been due 

to the small group size, or perhaps there is greater astrocytosis than microglial activation associated 

with certain MAPT mutations.  
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In order to explore further how biomarkers of glial activation link to neurodegeneration, we examined 

relationships between YKL-40 and chitotriosidase levels and CSF neurodegenerative biomarkers that 

are used in clinical practice and which reflect neuronal injury and tau pathology (T-tau and P-tau) and 

amyloid pathology (Aβ42). Overall, both YKL-40 and chitotriosidase levels were positively associated 

with T-tau and P-tau levels in FTD, but this association only reached significance in certain clinical 

subgroups.  For T-tau, there was a significant association with YKL-40 in bvFTD and nfvPPA and with 

chitotriosidase in bvFTD and lvPPA. For P-tau, there as a significant association with YKL-40 in bvFTD 

and lvPPA and with chitotriosidase in lvPPA. There was a small positive association between Aβ42 

levels and YKL-40 in lvPPA, and although most subgroups seemed to have a negative association 

between Aβ42 and chitotriosidase, none reached significance. This variation in the strength of 

association between biomarkers may be explained by underlying pathologies (different FTLD subtypes 

or AD) being associated with varying degrees of glial activation, neurodegeneration and tau pathology, 

or differences in clinical subgroup sizes. Positive associations between levels of CSF YKL-40 or 

chitotriosidase and neurodegenerative biomarkers have been identified in many studies of typical AD, 

particularly for T-tau [42,47,58,65–68,93] and P-tau [42,58,65,66,68,69,93,94]. Consistent with this, there 

was a strong association between levels of P-tau and both glia-derived proteins in our lvPPA subgroup, 

where most individuals had AD-like biomarkers and high levels of both YKL-40 and chitotriosidase, 

suggestive of significant hyperphosphorylated tau pathology and glial activation. Our results are 

consistent with strong associations between T-tau and YKL-40 identified in other studies of FTD [49,58], 

but to our knowledge no studies have explored associations between chitotriosidase and 

neurodegenerative biomarkers in FTD. Our findings suggest that chitotriosidase release may be 

similarly linked to neurodegeneration in FTD.  

 

In individuals with FTD but AD-like CSF (AD biomarker-positive subgroup), there were positive slopes 

for the association between YKL-40 and both T-tau and P-tau levels, but neither association reached 

significance, and chitotriosidase levels were not significantly associated with any neurodegenerative 
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biomarker. This contrasts with the strong associations between sTREM2 and both T-tau and P-tau levels 

in this group found previously [37], and in studies of amnestic AD. However, levels of YKL-40 and 

chitotriosidase were very high in most individuals within this subgroup, so a lack of variability 

combined with a relatively small sample size may have hampered our ability to detect weak 

associations between biomarkers. It is unclear why there was a positive association between Aβ42 and 

YKL-40 in this subgroup, although others have shown a similar association [47,66] or negative [94] or 

no significant [42] association with Aβ42 in AD. In individuals with likely FTLD (AD biomarker-

negative subgroup) there was a significant positive association between YKL-40 and both T-tau and P-

tau levels and a trend towards a positive association between chitotriosidase and T-tau levels. This 

suggests that glial activation may correlate with the degree of neuronal injury, and perhaps also tau 

pathology, in individuals with FTLD, supporting histopathological studies showing pronounced 

astrocytosis and microgliosis in FTLD, particularly tauopathies [9,10,26,28,95]. 

 

We also analysed associations between YKL-40 and chitotriosidase levels in our cohort, which to our 

knowledge has not been explored directly in FTD previously, although these seem to correlate 

moderately in AD [74] and in a combined familial MND and FTD cohort [48]. There was a strong 

positive association between levels of both proteins in FTD overall, and in most clinical subgroups, 

although this reached significance only in bvFTD and nfvPPA. Levels of YKL-40 and chitotriosidase 

were also highly associated in the AD biomarker-negative subgroup, but this did not reach significance 

in the AD biomarker-positive subgroup, again likely due to high levels of both proteins in most 

individuals and smaller sample size. These results suggest that astrocytic and microglial activation arise 

in tandem in FTD syndromes due to FTLD and perhaps AD pathology.  

 

Finally, we examined relationships between CSF YKL-40 and chitotriosidase levels and relevant clinical 

parameters such as age, disease duration and sex, which could independently affect glial activation. 

Age was strongly associated with YKL-40 levels in the whole cohort and in the FTD group, consistent 
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with previous studies of YKL-40 in AD [47,61,68] and FTD [43,45,49], and a strong association between 

sTREM2 and age in FTD [37]. This may reflect increased glial activation associated with aging, 

especially within the context of neurodegeneration, and emphasises the importance of future studies 

of glia-derived biomarkers in neurodegenerative disease cohorts exploring associations with age and, 

where applicable, adjusting group comparisons for age. There was no significant association between 

age and chitotriosidase levels in any group. In MND, plasma chitotriosidase activity was not associated 

with age [57], and most studies of CSF chitotriosidase in AD and FTD have found no association with 

age [48,59,74]. It is unclear why this differs from YKL-40, but perhaps age has less of an influence on 

microglial chitotriosidase release. We found no association between either YKL-40 or chitotriosidase 

and disease duration in FTD, in contrast to sTREM2, where we previously described a negative 

association between CSF sTREM2 levels and disease duration [37], but consistent with a study of YKL-

40 in FTD, where there was no association with disease duration [43]. However, our current data are 

cross sectional, so we were unable to explore longitudinal changes in YKL-40 or chitotriosidase levels 

to confirm whether these markers alter throughout the disease course. Lastly, we found no difference 

in YKL-40 or chitotriosidase levels between males and females in any group, suggesting limited 

influence of sex on release of these proteins into CSF in both healthy individuals and patients with FTD. 

 

Limitations of this study include the small size of some of the subgroups, which may have limited our 

power to detect significant differences between groups. However, this is inherent to a rare disease such 

as FTD which has multiple phenotypes, and difficult to avoid when analysing biomarker levels across 

a broad spectrum of disease, while confining CSF collection and biomarker analysis to one site in order 

to minimise inter-centre variation. Our patient cohort contained both individuals with a clinical 

diagnosis of an FTD syndrome most likely due to FTLD (bvFTD, svPPA and nfvPPA) and those more 

commonly associated with AD pathology (lvPPA). The use of clinical diagnosis rather than pathological 

confirmation as an inclusion criterion meant a combination of different pathologies and mutations in 

the FTD group may have affected YKL-40 and chitotriosidase levels in this group overall. However, we 
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were able to dissect out differences in protein levels between broad pathological entities (FTLD versus 

AD) and gene mutations through stratification of the FTD group by CSF biomarker profile and through 

a preliminary analysis by mutation type. We also intentionally used a stringent cut-off of T-tau/Aβ42 

ratio >1.0 to minimize misclassification of individuals into the wrong pathological subgroup, as 

employed previously [37]. In addition, all individuals with FTD were phenotyped in detail, meeting 

recent diagnostic criteria for bvFTD [38] or PPA [39]. 

 

Conclusions 

In conclusion, we show that levels of two glia-derived proteins, YKL-40 and chitotriosidase, are higher 

in the CSF of individuals with a clinical diagnosis of FTD than in cognitively normal controls. However, 

levels are higher in individuals with an FTD syndrome due to underlying AD pathology (particularly 

lvPPA) than due to FTLD. We display preliminary evidence that there are mutation-specific differences 

in YKL-40 and chitotriosidase levels, with particularly pronounced elevations of YKL-40 and 

chitotriosidase in GRN mutation carriers, and YKL-40 in MAPT mutation carriers, which may remain 

undetected in mixed genetic FTD cohorts. As CSF YKL-40, and perhaps chitotriosidase, levels correlate 

with neurodegenerative biomarkers, particularly T-tau, and with each other, in individuals with likely 

FTLD, these proteins may reflect extensive astrocytic and microglial activation arising in tandem with 

neurodegeneration in individuals with FTLD. 

 

Future studies should analyse CSF YKL-40 and chitotriosidase levels within larger cohorts of 

individuals with FTD, across a variety of clinical subgroups, and ideally in pathologically confirmed 

cases across the full spectrum of FTLD subtypes, with separate sporadic and genetic subgroups. 

Inclusion of a larger number of cases with mutations in GRN, MAPT and C9orf72 would enable 

confirmation of our preliminary observations of higher protein levels in symptomatic GRN and MAPT 

mutation carriers. Assessment of levels in presymptomatic mutation carriers could establish when 

these change prior to expected symptom onset. Exploration of relationships between baseline and 
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longitudinal measurements of CSF YKL-40 and chitotriosidase levels, and other markers of the disease 

process (such as serum or CSF neurofilament light levels or frontal lobe atrophy rate) in individuals 

with FTD, and presymptomatic individuals, would be extremely valuable. This could improve 

understanding of how chronic neuroinflammation links to neurodegeneration, enable determination of 

whether these proteins can be used as biomarkers of disease stage, intensity and progression, and 

provide validation for their use in upcoming clinical trials.  
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Figure Titles and Legends 

Fig 1. Comparison of CSF YKL-40 levels between groups and subgroups. Graphs show how CSF YKL-

40 levels differ across (a) controls and overall FTD group; (b) controls and clinical FTD subgroups; (c) 

controls and genetic FTD subgroups; (d) controls and CSF biomarker-defined pathological subgroups. 

Horizontal bars show mean CSF YKL-40 levels and upper and lower 95% confidence intervals for each 

group; *P<0.05, **P<0.01 

Fig 2. Comparison of CSF chitotriosidase levels between groups and subgroups. Graphs show how 

CSF Ln(chitotriosidase) levels differ across (a) controls and overall FTD group; (b) controls and clinical 

FTD subgroups; (c) controls and genetic subgroups; (d) controls and CSF biomarker-defined 

pathological subgroups. Horizontal bars show mean CSF Ln(chitotriosidase) levels and upper and 

lower 95% confidence intervals for each group; *P<0.05, **P<0.01 

Fig. 3. Relationship between CSF YKL-40 and CSF neurodegenerative biomarker levels. Graphs 

show associations between CSF YKL-40 and T-tau (a), P-tau (b) and Aβ42 (c) levels for controls and 

overall FTD group, between YKL-40 levels and T-tau (d), P-tau (e) and Aβ42 (f) levels for controls and 

clinical FTD subgroups, and between YKL-40 levels and T-tau (g), P-tau (h) and Aβ42 (i) levels for 

controls and CSF biomarker-defined pathological subgroups. T-tau values were Ln transformed before 

analysis. Lines are group regression lines adjusted for age and sex(controls) and age, sex and disease 

duration (overall dementia group, clinical subgroups and biomarker-defined pathological subgroups). 

See main text for individual β and P values for each association. 

Fig. 4. Relationship between CSF chitotriosidase and CSF neurodegenerative biomarker levels. 

Graphs show associations between CSF chitotriosidase and T-tau (a), P-tau (b) and Aβ42 (c) levels for 

controls and overall FTD group, between chitotriosidase levels and T-tau (d), P-tau (e) and Aβ42 (f) 

levels for controls and clinical FTD subgroups, and between chitotriosidase levels and T-tau (g), P-tau 

(h) and Aβ42 (i) levels for controls and CSF biomarker-defined pathological subgroups. Chitotriosidase 

and T-tau values were Ln transformed before analysis. Lines are group regression lines adjusted for 
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age and sex (controls) and age, sex and disease duration (overall dementia group, clinical subgroups 

and biomarker-defined pathological subgroups). See main text for individual β and P values for each 

association.  

Fig. 5. Relationship between chitotriosidase and YKL-40 levels in CSF. Graphs show CSF 

chitotriosidase levels versus CSF YKL-40 levels for controls and overall FTD group (a), clinical FTD 

subgroups (b) and controls and CSF biomarker-defined pathological subgroups (c). Chitotriosidase and 

YKL-40 values were Ln transformed before analysis. Lines in (a) are group regression lines adjusted for 

age and sex (controls) and age, sex and disease duration (dementia group). Lines in (b) are group 

regression lines for clinical subgroups adjusted for age, sex and disease duration. Lines in (c) are group 

regression lines adjusted for age and sex (controls) and age, sex and disease duration (CSF biomarker-

defined pathological subgroups). See main text for individual β and P values for each association 

Fig. 6. Relationship between CSF YKL-40 or chitotriosidase levels and age at CSF. Graphs show CSF 

YKL-40 levels versus age in controls and overall FTD group (a) and clinical FTD subgroups (b), and 

CSF chitotriosidase levels versus age in controls and overall FTD group (c) and clinical FTD subgroups 

(d). Chitotriosidase values were Ln transformed before analysis.  Lines in (a) and (c) are group 

regression lines adjusted for sex (controls) and sex and disease duration (dementia group). Lines in (b) 

and (d) are group regression lines for individual clinical subgroups adjusted for sex and disease 

duration. See main text for individual β and P values for each association. 

Fig. 7. Relationship between CSF YKL-40 or chitotriosidase levels and disease duration at CSF. 

Graphs show CSF YKL-40 levels versus disease duration in the overall FTD group (a) and clinical FTD 

subgroups (b), and CSF chitotriosidase levels versus disease duration in the overall FTD group (c) and 

clinical FTD subgroups (d). Chitotriosidase values were Ln transformed before analysis. Lines in (a) to 

(d) are group regression lines adjusted for age and sex. See main text for individual β and P values for 

each association. 


