18 research outputs found

    Risk and lifestyle sports: the case of bouldering

    Get PDF
    The recent case of Maylin v Dacorum Sports Trust [2017] EWHC 378 (QB) is the latest example of a claim being made for damages suffered whilst participating in bouldering, a form of low-level climbing. Whilst interesting in its own right in terms of how the courts apply legal principles to the area, it also sheds light on approaches to lifestyle sports more generally and the place of risk within play. This Intervention is essentially a case note of Maylin, but viewed, in part, through the lens of recent interdisciplinary work the authors have undertaken into parkour

    The impact of Arctic warming on the midlatitude jetstream: Can it? Has it? Will it?

    Get PDF
    Copyright © 2015 John Wiley & Sons, LtdThe Arctic lower atmosphere has warmed more rapidly than that of the globe as a whole, and this has been accompanied by unprecedented sea ice melt. Such large environmental changes are already having profound impacts on the flora, fauna, and inhabitants of the Arctic region. An open question, however, is whether these Arctic changes have an effect on the jet-stream and thereby influence weather patterns farther south. This broad question has recently received a lot of scientific and media attention, but conclusions appear contradictory rather than consensual. We argue that one point of confusion has arisen due to ambiguities in the exact question being posed. In this study, we frame our inquiries around three distinct questions: Can Arctic warming influence the midlatitude jet-stream? Has Arctic warming significantly influenced the midlatitude jet-stream? Will Arctic warming significantly influence the midlatitude jet-stream? We argue that framing the discussion around the three questions: Can it?, Has it?, and Will it? provides insight into the common themes emerging in the literature as well as highlights the challenges ahead

    Southern Hemisphere atmospheric blocking in CMIP5 and future changes in the Australia‐New Zealand sector

    Get PDF
    Many general circulation models fail to capture the observed frequency of atmospheric blocking events in the Northern Hemisphere; however, few studies have examined models in the Southern Hemisphere and those studies that have, have often been based on only a few models. To provide a comprehensive view of how the current generation of coupled general circulation models performs in the Southern Hemisphere and how blocking frequency changes under enhanced greenhouse gas forcing, we examine the output of 23 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that models have differing biases during winter, when blocking occurrence is highest, though models underestimate blocking frequency south of Australia during summer. We show that models generally have a reduction in blocking frequency with future anthropogenic forcing, particularly in the Australia‐New Zealand sector with the number of winter blocked days reduced by about one third by the end of the 21st century

    Skilful seasonal predictions of Summer European rainfal

    Get PDF
    This is the author accepted manuscript. The final version is available from American Geophysical Union (AGU) via the DOI in this record.Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however current seasonal forecast systems show no significant forecast skill. Here we show skilful predictions are possible (r~0.5, p80 members) are required for skilful predictions. This work is promising for the development of European summer rainfall climate services.This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), the EU FP7 SPECS project. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We also would like to thank Gerard van der Schrier and Else Van Den Besselaar for kindly providing us the pre-release E-OBS dataset version 'v16e' and further support. Model data used to create the figures are available from the authors upon request for academic use

    Tropical atmospheric drivers of wintertime European precipitation events

    No full text
    From observations, we identify a wave‐like pattern associated with northwestern European seasonal precipitation events. These events are associated with tropical precipitation anomalies, prompting us to investigate if there are any tropical–extratropical teleconnections, in particular the role of tropical anomalies in driving extratropical dynamics through Rossby wave propagation. Using a hierarchy of models from ray tracing to barotropic and baroclinic models, we investigate the Rossby wave mechanism and test potential tropical drivers and yield qualitative results. Using a barotropic model, we identify potential Rossby wave source regions which are consistent between the observations and the model. These regions include the tropical western and eastern Atlantic, the subtropical eastern Atlantic and, to a smaller degree, the subtropical eastern Pacific. Zonal wavenumber 2 and 3 components of the barotropic model responses match well with the observations and ray tracing supports the importance of these components. We use a baroclinic model to investigate the link between the observed Rossby wave source anomalies and the observed tropical precipitation anomalies. The reduced precipitation observed in the tropical Atlantic just north of the Equator can generate some of the observed Rossby wave source anomalies in the tropical Atlantic, while the increased precipitation observed in the tropical eastern Pacific can generate some of the observed Rossby wave source anomalies in the subtropical eastern Pacific. Our results can also be applied to European drought events because of the qualitative linearity in the observations and in our linear methods
    corecore