440 research outputs found

    Interpretation of heart rate variability via detrended fluctuation analysis and alpha-beta filter

    Full text link
    Detrended fluctuation analysis (DFA), suitable for the analysis of nonstationary time series, has confirmed the existence of persistent long-range correlations in healthy heart rate variability data. In this paper, we present the incorporation of the alpha-beta filter to DFA to determine patterns in the power-law behaviour that can be found in these correlations. Well-known simulated scenarios and real data involving normal and pathological circumstances were used to evaluate this process. The results presented here suggest the existence of evolving patterns, not always following a uniform power-law behaviour, that cannot be described by scaling exponents estimated using a linear procedure over two predefined ranges. Instead, the power law is observed to have a continuous variation with segment length. We also show that the study of these patterns, avoiding initial assumptions about the nature of the data, may confer advantages to DFA by revealing more clearly abnormal physiological conditions detected in congestive heart failure patients related to the existence of dominant characteristic scales.Comment: 18 pages, 14 figure

    Attractiveness of periodic orbits in parametrically forced systemswith time-increasing friction

    Get PDF
    We consider dissipative one-dimensional systems subject to a periodic force and study numerically how a time-varying friction affects the dynamics. As a model system, particularly suited for numerical analysis, we investigate the driven cubic oscillator in the presence of friction. We find that, if the damping coefficient increases in time up to a final constant value, then the basins of attraction of the leading resonances are larger than they would have been if the coefficient had been fixed at that value since the beginning. From a quantitative point of view, the scenario depends both on the final value and the growth rate of the damping coefficient. The relevance of the results for the spin-orbit model are discussed in some detail.Comment: 30 pages, 6 figure

    Computer simulations of the growth of synthetic peptide fibres

    Get PDF
    Abstract. We present a coarse-grained computer model designed to study the growth of fibres in a synthetic self-assembling peptide system. The system consists of two 28 residue α-helical sequences, denoted AB and CD, in which the interactions between the half peptides, A, B, C and D, may be tuned individually to promote different types of growth behaviour. In the model, AB and CD are represented by double ended rods, with interaction sites distributed along their lengths. Monte Carlo simulations are performed to follow fibre growth. It is found that lateral and longitudinal growth of the fibre are governed by different mechanisms -the former is diffusion limited with a very small activation energy for the addition of units, whereas the latter occurs via a process of secondary nucleation at the fibre ends. As a result, longitudinal growth generally proceeds more slowly than lateral growth. Furthermore, it is shown that the aspect ratio of the growing fibre may be controlled by adjusting the temperature and the relative strengths of the interactions. The predictions of the model are discussed in the context of published data from real peptide systems

    Saturation in cascaded optical amplifier free-space optical communication systems

    Get PDF
    The performance of a free-space optical (FSO) communication system in a turbulent atmosphere employing an optical amplifier (OA) cascade to extend reach is investigated. Analysis of both single and cascaded OA FSO communication links is given and the implications of using both adaptive (to channel state) and non-adaptive decision threshold schemes are analysed. The benefits of amplifier saturation, for example in the form of effective scintillation reduction when a non-adaptive decision threshold scheme is utilised at the receiver for different atmospheric turbulence regimes, are presented. Monte Carlo simulation techniques are used to model the probability distributions of the optical signal power, noise and the average bit error rate due to scintillation for the cascade. The performance of an adaptive decision threshold is superior to a non-adaptive decision threshold for both saturated and fixed gain preamplified receivers and the ability of a saturated gain OA to suppress scintillation is only meaningful for system performance when a non-adaptive decision threshold is used at the receiver. An OA cascade can be successfully used to extend reach in FSO communication systems and specific system implementations are presented. The optimal cascade scheme with a non-adaptive receiver would use frequent low gain saturated amplification

    A monodisperse transmembrane α-helical peptide barrel

    Get PDF
    The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing

    The moral discourses of ‘post-crisis’ neoliberalism: a case study of Lithuania’s Labour Code reform

    Get PDF
    This article problematizes the neoliberal reconfiguration of labour rights in Lithuania, a newer European Union member state, in which the impacts of the global economic and financial crisis were particularly severe and where radical austerity measures were subsequently imposed. Now, after six years, in an attempt to resolve the exhaustion of previous austerity-based solutions for economic recovery, a new Labour Code is being introduced which will further weaken labour protections and labour rights. This article analyses conflicting positions in current debates over Labour Code reform. It attempts to map the mobilization of strategic discursive resources in an unfolding dialogical ‘moral’ politics of Labour Code reform in the current conjuncture of ‘post- crisis’. Theoretically, this article draws upon the seminal work of the early Soviet Marxist scholar V. N. Voloshinov in proposing a dialogical method which foregrounds the interconnections of language, class and ideology

    Installing hydrolytic activity into a completely <i>de novo </i>protein framework

    Get PDF
    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine–histidine–glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis
    corecore