405 research outputs found
De novo design of a reversible phosphorylation-dependent switch for membrane targeting
Modules that switch protein-protein interactions on and off are essential to develop synthetic biology; for example, to construct orthogonal signaling pathways, to control artificial protein structures dynamically, and for protein localization in cells or protocells. In nature, the E. coli MinCDE system couples nucleotide-dependent switching of MinD dimerization to membrane targeting to trigger spatiotemporal pattern formation. Here we present a de novo peptide-based molecular switch that toggles reversibly between monomer and dimer in response to phosphorylation and dephosphorylation. In combination with other modules, we construct fusion proteins that couple switching to lipid-membrane targeting by: (i) tethering a 'cargo' molecule reversibly to a permanent membrane 'anchor'; and (ii) creating a 'membrane-avidity switch' that mimics the MinD system but operates by reversible phosphorylation. These minimal, de novo molecular switches have potential applications for introducing dynamic processes into designed and engineered proteins to augment functions in living cells and add functionality to protocells. The ability to dynamically control protein-protein interactions and localization of proteins is critical in synthetic biological systems. Here the authors develop a peptide-based molecular switch that regulates dimer formation and lipid membrane targeting via reversible phosphorylation.The authors thank the Biochemistry Core Facility of the Max Planck Institute of Biochemistry for LC-MS and CD spectroscopy services, Stefan Pettera and Stephan Uebel for assistance with peptide synthesis and analytical HPLC, and Katharina Nakel for assistance with cloning
Interpretation of heart rate variability via detrended fluctuation analysis and alpha-beta filter
Detrended fluctuation analysis (DFA), suitable for the analysis of
nonstationary time series, has confirmed the existence of persistent long-range
correlations in healthy heart rate variability data. In this paper, we present
the incorporation of the alpha-beta filter to DFA to determine patterns in the
power-law behaviour that can be found in these correlations. Well-known
simulated scenarios and real data involving normal and pathological
circumstances were used to evaluate this process. The results presented here
suggest the existence of evolving patterns, not always following a uniform
power-law behaviour, that cannot be described by scaling exponents estimated
using a linear procedure over two predefined ranges. Instead, the power law is
observed to have a continuous variation with segment length. We also show that
the study of these patterns, avoiding initial assumptions about the nature of
the data, may confer advantages to DFA by revealing more clearly abnormal
physiological conditions detected in congestive heart failure patients related
to the existence of dominant characteristic scales.Comment: 18 pages, 14 figure
Systematic review of the incidence and clinical risk predictors of atrial fibrillation and permanent pacemaker implantation for bradycardia in Fabry disease
INTRODUCTION: Fabry disease (FD) is an X-linked lysosomal storage disorder caused by enzyme deficiency, leading to glycosphingolipid accumulation. Cardiac accumulation triggers local tissue injury, electrical instability and arrhythmia. Bradyarrhythmia and atrial fibrillation (AF) incidence are reported in up to 16% and 13%, respectively. OBJECTIVE: We conducted a systematic review evaluating AF burden and bradycardia requiring permanent pacemaker (PPM) implantation and report any predictive risk factors identified. METHODS: We conducted a literature search on studies in adults with FD published from inception to July 2019. Study outcomes included AF or bradycardia requiring therapy. Databases included Embase, Medline, PubMed, Web of Science, CINAHL and Cochrane. The Risk of Bias Agreement tool for Non-Randomised Studies (RoBANS) was utilised to assess bias across key areas. RESULTS: 11 studies were included, eight providing data on AF incidence or PPM implantation. Weighted estimate of event rates for AF were 12.2% and 10% for PPM. Age was associated with AF (OR 1.05â1.20 per 1-year increase in age) and a risk factor for PPM implantation (composite OR 1.03). Left ventricular hypertrophy (LVH) was associated with AF and PPM implantation. CONCLUSION: Evidence supporting AF and bradycardia requiring pacemaker implantation is limited to single-centre studies. Incidence is variable and choice of diagnostic modality plays a role in detection rate. Predictors for AF (age, LVH and atrial dilatation) and PPM (age, LVH and PR/QRS interval) were identified but strength of association was low. Incidence of AF and PPM implantation in FD are variably reported with arrhythmia burden likely much higher than previously thought
Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction
Virtually all questions that one can ask about the behavioral and structural
complexity of a stochastic process reduce to a linear algebraic framing of a
time evolution governed by an appropriate hidden-Markov process generator. Each
type of question---correlation, predictability, predictive cost, observer
synchronization, and the like---induces a distinct generator class. Answers are
then functions of the class-appropriate transition dynamic. Unfortunately,
these dynamics are generically nonnormal, nondiagonalizable, singular, and so
on. Tractably analyzing these dynamics relies on adapting the recently
introduced meromorphic functional calculus, which specifies the spectral
decomposition of functions of nondiagonalizable linear operators, even when the
function poles and zeros coincide with the operator's spectrum. Along the way,
we establish special properties of the projection operators that demonstrate
how they capture the organization of subprocesses within a complex system.
Circumventing the spurious infinities of alternative calculi, this leads in the
sequel, Part II, to the first closed-form expressions for complexity measures,
couched either in terms of the Drazin inverse (negative-one power of a singular
operator) or the eigenvalues and projection operators of the appropriate
transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at
http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht
Local and macroscopic electrostatic interactions in single α-helices
The non-covalent forces that stabilise protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and α-helices in peptides. For these, electrostatic forces are believed to contribute, including interactions between: side chains; the backbone and side chains; and side chains and the helix macrodipole. Here we probe these experimentally using designed peptides. We find that both terminal backbone-side chain and certain side chain-side chain interactions (i.e., local effects between proximal charges, or interatomic contacts) contribute much more to helix stability than side chain-helix macrodipole electrostatics, which are believed to operate at larger distances. This has implications for current descriptions of helix stability, understanding protein folding, and the refinement of force fields for biomolecular modelling and simulations. In addition, it sheds light on the stability of rod-like structures formed by single α-helices that are common in natural proteins including non-muscle myosins
Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability
Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu-Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized
Structural resolution of switchable states of a de novo peptide assembly
De novo protein design is advancing rapidly. However, most designs are for single states. Here we report a de novo designed peptide that forms multiple α-helical-bundle states that are accessible and interconvertible under the same conditions. Usually in such designs amphipathic α helices associate to form compact structures with consolidated hydrophobic cores. However, recent rational and computational designs have delivered open α-helical barrels with functionalisable cavities. By placing glycine judiciously in the helical interfaces of an α-helical barrel, we obtain both open and compact states in a single protein crystal. Molecular dynamics simulations indicate a free-energy landscape with multiple and interconverting states. Together, these findings suggest a frustrated system in which steric interactions that maintain the open barrel and the hydrophobic effect that drives complete collapse are traded-off. Indeed, addition of a hydrophobic co-solvent that can bind within the barrel affects the switch between the states both in silico and experimentally
- âŠ