302 research outputs found

    Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue-specific gene deletion has proved informative in the analysis of pain pathways. <it>Advillin </it>has been shown to be a pan-neuronal marker of spinal and cranial sensory ganglia. We generated BAC transgenic mice using the <it>Advillin </it>promoter to drive a tamoxifen-inducible CreERT2 recombinase construct in order to be able to delete genes in adult animals. We used a floxed stop <it>ROSA26LacZ </it>reporter mouse to examine functional Cre expression, and analysed the behaviour of mice expressing Cre recombinase.</p> <p>Results</p> <p>We used recombineering to introduce a CreERT2 cassette in place of exon 2 of the <it>Advillin </it>gene into a BAC clone (RPCI23-424F19) containing the 5' region of the <it>Advillin </it>gene. Transgenic mice were generated using pronuclear injection. The resulting <it>AvCreERT2 </it>transgenic mice showed a highly specific expression pattern of Cre activity after tamoxifen induction. Recombinase activity was confined to sensory neurons and no expression was found in other organs. Less than 1% of neurons showed Cre expression in the absence of tamoxifen treatment. Five-day intraperitoneal treatment with tamoxifen (2 mg per day) induced Cre recombination events in ≈90% of neurons in dorsal root and cranial ganglia. Cell counts of dorsal root ganglia (DRG) from transgenic animals with or without tamoxifen treatment showed no neuronal cell loss. Sensory neurons in culture showed ≈70% induction after 3 days treatment with tamoxifen. Behavioural tests showed no differences between wildtype, <it>AvCreERT2 </it>and tamoxifen-treated animals in terms of motor function, responses to light touch and noxious pressure, thermal thresholds as well as responses to inflammatory agents.</p> <p>Conclusions</p> <p>Our results suggest that the inducible pan-DRG <it>AvCreERT2 </it>deleter mouse strain is a useful tool for studying the role of individual genes in adult sensory neuron function. The pain phenotype of the Cre-induced animal is normal; therefore any alterations in pain processing can be unambiguously attributed to loss of the targeted gene.</p

    Effect of variety and processing method on functional properties of traditional sweet potato flour (“elubo”) and sensory acceptability of cooked paste (“amala”)

    Get PDF
    “Amala” is a generic term in Nigeria, used to describe a thick paste prepared by stirring flour (“elubo”) from yam, cassava or unripe plantain, in hot water, to form a smooth consistency. In order to overcome its high perishability and increase the utilization of sweet potato roots, three varieties of sweet potato roots were processed into flour using two methods. The interactive effect of variety and the processing method had a significant effect (P < 0.05) on all the functional properties of the flour except yellowness, setback viscosity, and peak time. Acceptable sweet potato “amala” with average sensory acceptability score of 7.5 were obtained from yellow-fleshed varieties irrespective of the processing method. Flour that produced acceptable “amala” were characterized by lower values of protein (2.20–3.94%), fiber (1.30–1.65%), total sugar (12.41–38.83 lg/mg), water absorption capacity (168–215 g/100 g), water solubility (8.29–14.65%), swelling power (0.52–0.82 g/g), and higher peak time (6.9–8.7 min)

    Ipomoea batatas (L.) Lam.: a rich source of lipophilic phytochemicals

    Get PDF
    The lipophilic extracts from the storage root of 13 cultivars of sweet potato (Ipomoea batatas (L.) Lam.) were evaluated by gas chromatography-mass spectrometry with the aim to valorize them and offer information on their nutritional properties and potential health benefits. The amount of lipophilic extractives ranged from 0.87 to 1.32% dry weight. Fatty acids and sterols were the major families of compounds identified. The most abundant saturated and unsaturated fatty acids were hexadecanoic acid (182-428 mg/kg) and octadeca-9,12-dienoic acid (133-554 mg/kg), respectively. β-Sitosterol was the principal phytosterol, representing 55.2-77.6% of this family, followed by campesterol. Long-chain aliphatic alcohols and α-tocopherol were also detected but in smaller amounts. The results suggest that sweet potato should be considered as an important dietary source of lipophilic phytochemicals.info:eu-repo/semantics/publishedVersio

    Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates

    Get PDF
    Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA

    CASZ1b, the Short Isoform of CASZ1 Gene, Coexpresses with CASZ1a during Neurogenesis and Suppresses Neuroblastoma Cell Growth

    Get PDF
    In Drosophila, the CASZ1 (castor) gene encodes a zinc finger transcription factor and is a neural fate-determination gene. In mammals, the CASZ1 gene encodes two major isoforms, CASZ1a with 11 zinc fingers and CASZ1b with 5 zinc fingers. CASZ1b is more evolutionally conserved since it is the only homologue found in drosophila and Xenopus. Our previous study showed that full length CASZ1 (CASZ1a) functions to suppress growth in neuroblastoma tumor. However, the function of CASZ1b isoform in mammals is unknown. In this study, realtime PCR analyses indicate that mouse CASZ1b (mCASZ1b) is dynamically expressed during neurogenesis. CASZ1b and CASZ1a co-exist in all the neuronal tissues but exhibit distinct expression patterns spatially and temporally during brain development. CASZ1b and CASZ1a expression is coordinately upregulated by the differentiation agent Retinoic Acid, as well as agents that modify the epigenome in neural crest derived neuroblastoma cell lines. In contrast CASZ1b is down regulated while CASZ1a is upregulated by agents that raise intracellular cAMP levels. CASZ1b and CASZ1a have no synergistic or antagonistic activities on the regulation of their target NGFR gene transcription. Specific restoration of CASZ1b in NB cells suppresses tumor growth in vitro and in vivo. Consistent with its function role, we find that low CASZ1b expression is significantly associated with decreased survival probability of neuroblastoma patients (p<0.02). This study indicates that although their mechanisms of regulation may be distinct, both CASZ1b and CASZ1a have largely redundant but critical roles in suppressing tumor cell growth

    Real patient learning integrated in a preclinical block musculoskeletal disorders. Does it make a difference?

    Get PDF
    Although musculoskeletal disorders are the most common reason for general practitioner visits, training did not keep pace. Implementation of learning from patients with rheumatologic disorders linked together with the teaching of theoretical knowledge in the preclinical medical education might be an important step forward in the improvement of quality of care for these patients. The Leiden Medical School curriculum has implemented two non-obligatory real patient learning (RPL) practicals integrated within the preclinical block musculoskeletal disorders. This study investigates the educational effectiveness of the practicals, the expectations students have of RPL, and students’ satisfaction. Participants’ grades on the end-of-block test served as the test results of the educational effectiveness of the practicals and were compared with those of the non-participants. Qualitative data was collected by means of questionnaires generated by focus groups. The participants in practicals scored significantly higher at the end-of-block test. The expected effects of the contact with real patients concerned positive effects on cognition and skills. ‘Contextualizing of the theory’, ‘better memorizing of clinical pictures’, and ‘understanding of the impact of the disease’ were the most frequently mentioned effects of the practicals. Overall, the participants were (very) enthusiastic about this educational format. The RPL practicals integrated within a preclinical block musculoskeletal disorders are a valuable addition to the Leiden medical curriculum. This relatively limited intervention exhibits a strong effect on students’ performance in tests. Future research should be directed towards the long-term effects of this intervention

    Target Detection Performance Bounds in Compressive Imaging

    Get PDF
    This paper describes computationally efficient approaches and associated theoretical performance guarantees for the detection of known targets and anomalies from few projection measurements of the underlying signals. The proposed approaches accommodate signals of different strengths contaminated by a colored Gaussian background, and perform detection without reconstructing the underlying signals from the observations. The theoretical performance bounds of the target detector highlight fundamental tradeoffs among the number of measurements collected, amount of background signal present, signal-to-noise ratio, and similarity among potential targets coming from a known dictionary. The anomaly detector is designed to control the number of false discoveries. The proposed approach does not depend on a known sparse representation of targets; rather, the theoretical performance bounds exploit the structure of a known dictionary of targets and the distance preservation property of the measurement matrix. Simulation experiments illustrate the practicality and effectiveness of the proposed approaches.Comment: Submitted to the EURASIP Journal on Advances in Signal Processin

    Anti-nociceptive and desensitizing effects of olvanil on capsaicin-induced thermal hyperalgesia in the rat

    Get PDF
    Background: Olvanil (NE 19550) is a non-pungent synthetic analogue of capsaicin, the natural pungent ingredient of capsicum which activates the transient receptor potential vanilloid type-1 (TRPV1) channel and was developed as a potential analgesic compound. Olvanil has potent anti-hyperalgesic effects in several experimental models of chronic pain. Here we report the inhibitory effects of olvanil on nociceptive processing using cultured dorsal root ganglion (DRG) neurons and compare the effects of capsaicin and olvanil on thermal nociceptive processing in vivo; potential contributions of the cannabinoid CB1 receptor to olvanil’s anti-hyperalgesic effects were also investigated. Methods: A hot plate analgesia meter was used to evaluate the anti-nociceptive effects of olvanil on capsaicin-induced thermal hyperalgesia and the role played by CB1 receptors in mediating these effects. Single cell calcium imaging studies of DRG neurons were employed to determine the desensitizing effects of olvanil on capsaicin-evoked calcium responses. Statistical analysis used Student’s t test or one way ANOVA followed by Dunnett’s post-hoctest as appropriate. Results: Both olvanil (100 nM) and capsaicin (100 nM) produced significant increases in intracellular calcium concentrations [Ca2+]I in cultured DRG neurons. Olvanil was able to des ensitise TRPV1 responses to further capsaicin exposure more effectively than capsaicin. Intra plantar injection of capsaicin (0.1, 0.3 and 1μg) produced a robust TRPV1-dependant thermal hyperalgesia in rats, whilst olvanil (0.1, 0.3 and 1μg) produced no hyperalgesia, emphasizing its lack of pungency. The highest dose of olvanil significantly reduced the hyperalgesic effects of capsaicin in vivo. Intraplantar injection of the selective cannabinoid CB1 receptor antagonist rimonabant (1μg) altered neither capsaicin-induced thermal hyperalgesia nor the desensitizing properties of olvanil, indicating a lack of involvement of CB1receptors. Conclusions: Olvanil is effective in reducing capsaicin-induced thermal hyperalgesia, probably via directly desensitizingTRPV1 channels in a CB 1 receptor-independent fashion. The results presented clearly support the potential for olvanil in the development of new topical analgesic preparations for treating chronic pain conditions while avoiding the unwanted side effects of capsaicin treatments

    Genomic and Transcriptional Co-Localization of Protein-Coding and Long Non-Coding RNA Pairs in the Developing Brain

    Get PDF
    Besides protein-coding mRNAs, eukaryotic transcriptomes include many long non-protein-coding RNAs (ncRNAs) of unknown function that are transcribed away from protein-coding loci. Here, we have identified 659 intergenic long ncRNAs whose genomic sequences individually exhibit evolutionary constraint, a hallmark of functionality. Of this set, those expressed in the brain are more frequently conserved and are significantly enriched with predicted RNA secondary structures. Furthermore, brain-expressed long ncRNAs are preferentially located adjacent to protein-coding genes that are (1) also expressed in the brain and (2) involved in transcriptional regulation or in nervous system development. This led us to the hypothesis that spatiotemporal co-expression of ncRNAs and nearby protein-coding genes represents a general phenomenon, a prediction that was confirmed subsequently by in situ hybridisation in developing and adult mouse brain. We provide the full set of constrained long ncRNAs as an important experimental resource and present, for the first time, substantive and predictive criteria for prioritising long ncRNA and mRNA transcript pairs when investigating their biological functions and contributions to development and disease
    corecore