1,280 research outputs found

    On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    Get PDF
    The presence of vertical temperature and salinity gradients in the upper ocean and the occur- rence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require atten- tion to variability in the upper ocean and to the limited validity of assuming ‘‘constant chemistry’’ in trans- forming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects

    The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies

    Get PDF
    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air–sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air–sea CO2 flux, and hence the presented fCO2 distributions can be used in air–sea gas flux calculations together with climatologies of other climate variables

    Breaking down the barriers: fMRI applications in pain, analgesia and analgesics

    Get PDF
    This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain

    Optical cuff for optogenetic control of the peripheral nervous system

    Get PDF
    OBJECTIVE: Nerves in the peripheral nervous system (PNS) contain axons with specific motor, somatosensory and autonomic functions. Optogenetics offers an efficient approach to selectively activate axons within the nerve. However, the heterogeneous nature of nerves and their tortuous route through the body create a challenging environment to reliably implant a light delivery interface. APPROACH: Here, we propose an optical peripheral nerve interface – an optocuff -, so that optogenetic modulation of peripheral nerves become possible in freely behaving mice. MAIN RESULTS: Using this optocuff, we demonstrate orderly recruitment of motor units with epineural optical stimulation of genetically targeted sciatic nerve axons, both in anaesthetized and in awake, freely behaving animals. Behavioural experiments and histology show the optocuff does not damage the nerve thus is suitable for long-term experiments. SIGNIFICANCE: These results suggest that the soft optocuff might be a straightforward and efficient tool to support more extensive study of the PNS using optogenetics

    FluxEngine: A Flexible Processing System for Calculating Atmosphere–Ocean Carbon Dioxide Gas Fluxes and Climatologies

    Get PDF
    The air–sea flux of greenhouse gases [e.g., carbon dioxide (CO2)] is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher-resolution calcu- lations of these gas fluxes are required if researchers are to fully understand and predict future climate. Satellite Earth observation is able to provide large spatial-scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific com- munity. Fortunately, the development of cloud computing can provide a solution. This paper describes an open-source air–sea CO2 flux processing toolbox called the ‘‘FluxEngine,’’ designed for use on a cloud- computing infrastructure. The toolbox allows users to easily generate global and regional air–sea CO2 flux data from model, in situ, and Earth observation data, and its air–sea gas flux calculation is user configurable. Its current installation on the Nephalae Cloud allows users to easily exploit more than 8 TB of climate-quality Earth observation data for the derivation of gas fluxes. The resultant netCDF data output files contain .20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, which verifies the air–sea CO2 flux calculations; demon- strates the use of the tools for studying global and shelf sea air–sea fluxes; and describes future developments

    Spinal cord NR1 serine phosphorylation and NR2B subunit suppression following peripheral inflammation

    Get PDF
    BACKGROUND: Spinal cord N-methyl-D-aspartate (NMDA) receptors are intimately involved in the development and maintenance of central sensitization. However, the mechanisms mediating the altered function of the NMDA receptors are not well understood. In this study the role of phosphorylation of NR1 splice variants and NR2 subunits was examined following hind paw inflammation in rats. We further examined the level of expression of these proteins following the injury. RESULTS: Lumbar spinal cord NR1 subunits were found to be phosphorylated on serine residues within two hours of the induction of hind paw inflammation with carrageenan. The enhanced NR1 serine phosphorylation reversed within six hours. No phosphorylation on NR1 threonine or tyrosine residues was observed. Likewise, no NR2 subunit phosphorylation was observed on serine, threonine or tyrosine residues. An analysis of NR1 and NR2 protein expression demonstrated no change in the levels of NR1 splice variants or NR2A following the inflammation. However, spinal cord NR2B expression was depressed by the hind paw inflammation. The expression of NR2B remained depressed for more than one week following initiation of the inflammation. CONCLUSION: These data suggest that NR1 serine phosphorylation leads to an initial increase in NMDA receptor activity in the spinal cord following peripheral injury. The suppression of NR2B expression suggests compensation for the enhanced nociceptive activity. These data indicate that spinal cord NMDA receptors are highly dynamic in the development, maintenance and recovery from central sensitization following an injury. Thus, chronic pain therapies targeted to NMDA receptors should be designed for the exact configuration of NMDA receptor subunits and post-translational modifications present during specific stages of the disease

    Vagal sensory neurons drive mucous cell metaplasia

    Get PDF
    Summary: Airway sensory neuron-produced Substance P heightens allergy-induced goblet cell hyperplasia and hypersecretion of Muc5AC, electrically silencing these overreactive neurons reduced these components of lung type 2 allergic inflammatory response

    Pulsed electromagnetic energy treatment offers no clinical benefit in reducing the pain of knee osteoarthritis: a systematic review

    Get PDF
    Background The rehabilitation of knee osteoarthritis often includes electrotherapeutic modalities as well as advice and exercise. One commonly used modality is pulsed electromagnetic field therapy (PEMF). PEMF uses electro magnetically generated fields to promote tissue repair and healing rates. Its equivocal benefit over placebo treatment has been previously suggested however recently a number of randomised controlled trials have been published that have allowed a systematic review to be conducted. Methods A systematic review of the literature from 1966 to 2005 was undertaken. Relevant computerised bibliographic databases were searched and papers reviewed independently by two reviewers for quality using validated criteria for assessment. The key outcomes of pain and functional disability were analysed with weighted and standardised mean differences being calculated. Results Five randomised controlled trials comparing PEMF with placebo were identified. The weighted mean differences of the five papers for improvement in pain and function, were small and their 95% confidence intervals included the null. Conclusion This systematic review provides further evidence that PEMF has little value in the management of knee osteoarthritis. There appears to be clear evidence for the recommendation that PEMF does not significantly reduce the pain of knee osteoarthritis
    corecore