19 research outputs found

    Modeling Algae Powered Neighborhood Through GIS and BIM Integration

    Get PDF
    This paper aims to propose a modeling method for algae powered neighborhoods through GIS-BIM integration. In the first part of the paper, the applicability of different types of algae systems in an urban neighborhood are studied. The various systems of algae provide different strengths and weakness that affect their performance and suitability for given urban scenarios. Through extensive literature review, the variables that affect the performance of the micro-algae in the built environment are identified, with a focus on flat-panel photo bio-reactors and tubular photobioreactors. A previous GIS model for data management, performance analysis and design of the algae systems is reviewed [1], which shows its limitations in managing fine-grained structures and functions of algae systems. A bottom-up BIM approach to deal with these limitations is further explored. The algae-embedded built environment can be modeled in the parametric 3D BIM and Rhinoceros with a set of building parameters for the roof, façade, window to wall ratio, etc. Subsequently, solar exposure on building surfaces, the use of the buildings and their respective façade types would be studied. Parametric 3D models of the buildings allows for faster design modification and the creation of multiple design options. These models can be used to perform energy analysis using the parametric energy analysis tool to check for building energy use intensity (EUI). The bottom-up approach explored in this research design aims to facilitate visualization and analysis of the built environment and gauge the productivity of microalgae. Finally, a platform for BIM –GIS integration and its possibility is explored in this paper. © 2017 The Authors

    High Efficiency Megawatt Motor Preliminary Design

    Get PDF
    The High Efficiency Megawatt Motor (HEMM) is being designed to meet the needs of Electrified Aircraft Propulsion (EAP). A preliminary design has been completed and risk reduction activities are being conducted in three key areas: cryogenic cooler design, superconducting rotor coil design and manufacturing, and stator thermal management. The key objective of HEMM is to establish a motor technology which simultaneously attains high specific power (>16kW/kg ratio to electromagnetic weight) and high efficiency (>98%) by judicious application of high temperature superconducting wire and integrated thermal management. Another important feature is to achieve the performance goals with an eye to aircraft integration constraints. An electromagnetic analysis was performed which shows that the proposed HEMM design meets the performance objectives if key current capability and mechanical constraints are achieved. The risk reduction activities are the first assessment of the key design features. The HEMM technology could be applied to a range of aircraft types that require megawatt level electrical power

    High Efficiency Megawatt Motor Conceptual Design

    Get PDF
    The High Efficiency Megawatt Motor (HEMM) is being designed to meet the needs of Electrified Aircraft Propulsion (EAP). The key objective of this work is to establish a motor technology which simultaneously attains high specific power (>16kW/kg ratio to electromagnetic weight) and high efficiency (>98%) by judicious application of high temperature superconducting wire and integrated thermal management. Another important feature is to achieve the performance goals with an eye to aircraft integration constraints. An electromagnetic analysis was performed which shows that the proposed HEMM design meets the performance objectives if key current capability and mechanical constraints are achieved. Sensitivity of motor power and performance to those parameters is illustrated. The HEMM technology could be applied to a range of aircraft types that require megawatt level electrical power

    Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: Study of immunological memory and long-term toxicology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types <it>in vitro</it>. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed.</p> <p>Results</p> <p>The toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs.</p> <p>Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8<sup>+ </sup>T cell memory responses, whereas MVA-encoded nef induced CD4<sup>+ </sup>T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate the possibility to boost HIV-1 Nef-specific immune responses using the MVAnef construct despite the presence of potent anti-vector immunity.</p> <p>Conclusion</p> <p>This study shows that the nef gene vectored by MVA does not induce malignancies or other adverse effects in mice. Further, we show that when the nef gene is delivered by plasmid or by a viral vector, it elicits potent and long-lasting immune responses and that these responses can be directed towards a CD4<sup>+ </sup>or a CD8<sup>+ </sup>T cell response depending on the choice of vector.</p

    BREEDING BIOLOGY AND SUCCESS OF A REINTRODUCED POPULATION OF THE CRITICALLY ENDANGERED PUAIOHI (\u3ci\u3eMYADESTES PALMERI\u3c/i\u3e)

    Get PDF
    The ultimate success of reintroduction programs for endangered species depends on the ability of reintroduced animals to breed in the wild. We studied the nesting success and breeding biology of a reintroduced population of Puaiohi (Myadestes palmeri) on the island of Kaua‛i, Hawaii. Thirty-four captive-bred Puaiohi were released into the Alaka‛i Swamp in 1999–2001 and monitored using radiotelemetry. Ten females and two males paired with wild and other released birds, including one polygynous trio. From March to September, 31 nests were built. Mean clutch size was 2.0 eggs, daily nest survival was 0.97 ± 0.01 (mean ± SE) and overall nest success was 0.40 ± 0.02. We confirmed predation, most probably by rats (Rattus spp.), as the greatest cause of nest failure, occurring at 38% of active nests with known fates, and causing the death of two nesting adult females. Ground-based rodent control proved ineffective at protecting nest attempts. Successful nests fledged an average of 1.4 young each (n = 10), and 85% of fledglings survived at least two weeks. Importantly, breeding behavior and success were comparable to those of wild Puaiohi. This is the first record of breeding in the wild from captive-bred endangered Hawaiian passerines. The ability of captive-bred Puaiohi to survive and breed successfully in the wild bodes well for future releases of this and other endangered passerines, but high predation rates on nests and nesting females highlights the importance of maintaining and restoring safe habitat for recovery

    Survival, dispersal, and home-range establishment of reintroduced captive-bred puaiohi, \u3ci\u3eMyadestes palmeri\u3c/i\u3e

    Get PDF
    We monitored the survival, dispersal, and home-range establishment of captive-bred, reintroduced puaiohi Myadestes palmeri, a critically endangered thrush endemic to the island of Kauai. Fourteen captive-bred, juvenile birds were released from hacktowers in January–February 1999 and monitored for 8–10 weeks using radiotelemetry. All 14 birds (100%) survived to 56 days post-release. Two birds (14.3%) dispersed greater than 3 km from release site within 1day of release. The remaining birds settled within 1week and established either temporary home-ranges (mean area=7.9 ± 12.0 ha, range 0.4–31.9) or breeding home-ranges (mean area 1.2 ± 0.34 ha, range 0.8–1.6). Temporary home ranges were abandoned by the beginning of the breeding season, and ultimately 6 of the 14 birds (43%) established breeding home ranges in the release area. The high survival rate bodes well for establishing additional populations through captive breeding and release; however, the 57% dispersal rate out of the target area means that several releases of birds may be necessary in order to repopulate a given drainage. Furthermore, observed dispersal and gene flow between the reintroduced and wild populations have important implications for management of the captive flock
    corecore