15,907 research outputs found

    Physical Mechanisms for the Variable Spin-down of SGR 1900+14

    Get PDF
    We consider the physical implications of the rapid spindown of Soft Gamma Repeater 1900+14, and of the apparent "braking glitch", \Delta P/P = l x 10^-4, that was concurrent with the Aug. 27th giant flare. A radiation-hydrodynamical outflow associated with the flare could impart the required torque, but only if the dipole magnetic field is stronger than ~ 10^14 G and the outflow lasts longer and/or is more energetic than the observed X-ray flare. A positive period increment is also a natural consequence of a gradual, plastic deformation of the neutron star crust by an intense magnetic field, which forces the neutron superfluid to rotate more slowly than the crust. Sudden unpinning of the neutron vortex lines during the August 27th event would then induce a glitch opposite in sign to those observed in young pulsars, but of a much larger magnitude as a result of the slower rotation. The change in the persistent X-ray lightcurve following the August 27 event is ascribed to continued particle heating in the active region of that outburst. The enhanced X-ray output can be powered by a steady current flowing through the magnetosphere, induced by the twisting motion of the crust. The long term rate of spindown appears to be accelerated with respect to a simple magnetic dipole torque. Accelerated spindown of a seismically-active magnetar will occur when its persistent output of Alfven waves and particles exceeds its spindown luminosity. We suggest that SGRs experience some episodes of relative inactivity, with diminished spindown rates, and that such inactive magnetars are observed as Anomalous X-ray Pulsars (AXPs). The rapid reappearence of persistent X-ray emission following August 27 flare gives evidence against accretion-powered models.Comment: 24 pages, no figure

    Cytochrome P450 CYP1B1 interacts with 8-<i>methoxypsoralen</i> (8-MOP) and influences psoralen-Ultraviolet A (PUVA) sensitivity

    Get PDF
    Background: There are unpredictable inter-individual differences in sensitivity to psoralen-UVA (PUVA) photochemotherapy, used to treat skin diseases including psoriasis. Psoralens are metabolised by cytochrome P450 enzymes (P450), and we hypothesised that variability in cutaneous P450 expression may influence PUVA sensitivity. We previously showed that P450 CYP1B1 was abundantly expressed in human skin and regulated by PUVA, and described marked inter-individual differences in cutaneous CYP1B1 expression.Objectives: We investigated whether CYP1B1 made a significant contribution to 8-methoxypsoralen (8-MOP) metabolism, and whether individuality in CYP1B1 activity influenced PUVA sensitivity.Methods: We used E. coli membranes co-expressing various P450s and cytochrome P450 reductase (CPR) to study 8-MOP metabolism and cytotoxicity assays in CYP1B1-expressing mammalian cells to assess PUVA sensitivity.Results: We showed that P450s CYP1A1, CYP1A2, CYP1B1, CYP2A6 and CYP2E1 influence 8-MOP metabolism. As CYP1B1 is the most abundant P450 in human skin, we further demonstrated that: (i) CYP1B1 interacts with 8-MOP (ii) metabolism of the CYP1B1 substrates 7-ethoxyresorufin and 17-b-estradiol showed concentration-dependent inhibition by 8-MOP and (iii) inhibition of 7-ethoxyresorufin metabolism by 8-MOP was influenced by CYP1B1 genotype. The influence of CYP1B1 on PUVA cytotoxicity was further investigated in a Chinese hamster ovary cell line, stably expressing CYP1B1 and CPR, which was more sensitive to PUVA than control cells, suggesting that CYP1B1 metabolises 8-MOP to a more phototoxicmetabolite(s).Conclusion: Our data therefore suggest that CYP1B1 significantly contributes to cutaneous 8-MOP metabolism, and that individuality in CYP1B1 expression may influence PUVA sensitivity

    Gravitational radiation from collapsing magnetized dust

    Get PDF
    In this article we study the influence of magnetic fields on the axial gravitational waves emitted during the collapse of a homogeneous dust sphere. We found that while the energy emitted depends weakly on the initial matter perturbations it has strong dependence on the strength and the distribution of the magnetic field perturbations. The gravitational wave output of such a collapse can be up to an order of magnitude larger or smaller calling for detailed numerical 3D studies of collapsing magnetized configurations

    The Prelude to and Aftermath of the Giant Flare of 2004 December 27: Persistent and Pulsed X-ray Properties of SGR 1806-20 from 1993 to 2005

    Get PDF
    On 2004 December 27, a highly-energetic giant flare was recorded from the magnetar candidate SGR 1806-20. In the months preceding this flare, the persistent X-ray emission from this object began to undergo significant changes. Here, we report on the evolution of key spectral and temporal parameters prior to and following this giant flare. Using the Rossi X-ray Timing Explorer, we track the pulse frequency of SGR 1806-20 and find that the spin-down rate of this SGR varied erratically in the months before and after the flare. Contrary to the giant flare in SGR 1900+14, we find no evidence for a discrete jump in spin frequency at the time of the December 27th flare (|dnu/nu| < 5 X 10^-6). In the months surrounding the flare, we find a strong correlation between pulsed flux and torque consistent with the model for magnetar magnetosphere electrodynamics proposed by Thompson, Lyutikov & Kulkarni (2002). As with the flare in SGR 1900+14, the pulse morphology of SGR 1806-20 changes drastically following the flare. Using the Chandra X-ray Observatory and other publicly available imaging X-ray detector observations, we construct a spectral history of SGR 1806-20 from 1993 to 2005. The usual magnetar persistent emission spectral model of a power-law plus a blackbody provides an excellent fit to the data. We confirm the earlier finding by Mereghetti et al. (2005) of increasing spectral hardness of SGR 1806-20 between 1993 and 2004. Contrary to the direct correlation between torque and spectral hardness proposed by Mereghetti et al., we find evidence for a sudden torque change that triggered a gradual hardening of the energy spectrum on a timescale of years. Interestingly, the spectral hardness, spin-down rate, pulsed, and phase-averaged of SGR 1806-20 all peak months before the flare epoch.Comment: 37 pages, 8 figures, 8 tables. Accepted for publication in ApJ. To appear in the Oct 20 2006 editio

    The effect of flares on total solar irradiance

    Full text link
    Flares are powerful energy releases occurring in stellar atmospheres. Solar flares, the most intense energy bursts in the solar system, are however hardly noticeable in the total solar luminosity. Consequently, the total amount of energy they radiate 1) remains largely unknown and 2) has been overlooked as a potential contributor to variations in the Total Solar Irradiance (TSI), i.e. the total solar flux received at Earth. Here, we report on the detection of the flare signal in the TSI even for moderate flares. We find that the total energy radiated by flares exceeds the soft X-ray emission by two orders of magnitude, with an important contribution in the visible domain. These results have implications for the physics of flares and the variability of our star.Comment: accepted in Nature Physic

    Prediction of strong shock structure using the bimodal distribution function

    Full text link
    A modified Mott-Smith method for predicting the one-dimensional shock wave solution at very high Mach numbers is constructed by developing a system of fluid dynamic equations. The predicted shock solutions in a gas of Maxwell molecules, a hard sphere gas and in argon using the newly proposed formalism are compared with the experimental data, direct-simulation Monte Carlo (DSMC) solution and other solutions computed from some existing theories for Mach numbers M<50. In the limit of an infinitely large Mach number, the predicted shock profiles are also compared with the DSMC solution. The density, temperature and heat flux profiles calculated at different Mach numbers have been shown to have good agreement with the experimental and DSMC solutionsComment: 22 pages, 9 figures, Accepted for publication in Physical Review

    The brain is getting ready for dinner

    Get PDF
    Every evening, as we get ready for dinner, in addition to the routine behaviors of preparing the meal itself, we also prepare our bodies to cope with the upcoming meal. This could take the form of making restaurant reservations, changing into appropriate attire, washing hands, priming ourselves with an aperitif, or even consciously avoiding snacks as the meal approaches. A study by Johnstone and colleagues in this issue of Cell Metabolism (Johnstone et al., 2006) provides evidence that in parallel to our learned preparatory behaviors, our central nervous system is going through comparable motions as it gets ready for the anticipated meal

    Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number

    Get PDF
    There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This article aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimontovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a sub-domain of the continuum range which the conventional Knudsen number classification does not account for appropriately. In this sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics

    Dynamic Properties of Soft Ground in Shanghai

    Get PDF
    Shanghai is located on the east coast of China at the mouth of the Yangtze river at the East China Sea. The alluvial soil deposit at this location is about 300 m deep with an upper soft soil stratum about 100m thick. A study of shear modulus G and damping ratio D of the soft soil stratum has been conducted using Drnevich Resonant Column Device. The test results have been compared with empirical formula for sands established by Hardin and Richart. New empirical relationships for the Shanghai silts and clays are presented
    • …
    corecore