4 research outputs found

    Identification of factors associated with Fasciola hepatica infection risk areas on pastures via an environmental DNA survey of Galba truncatula distribution using droplet digital and quantitative real-time PCR assays

    Get PDF
    Abstract Environmental DNA (eDNA) is a powerful tool for identifying the spatial and temporal presence and density of species in a range of aquatic habitats. The analysis of eDNA has a wide range of application, one of which may be to inform of Fasciola hepatica infection risk on pastures based on the detection of its eDNA as well as that of its intermediate snail host, Galba truncatula eDNA. Here, droplet digital PCR (ddPCR) and quantitative real‐time PCR (qPCR) assays were developed to detect the eDNA of F. hepatica, and its intermediate snail host, G. truncatula in water samples collected from pastures grazed by cattle and/or sheep. Environmental factors associated with species presence, as detected via an eDNA survey, were identified using zero‐inflated linear mixed models. Sixty‐four habitats were sampled across six farms in Ceredigion, Wales, UK, with ddPCR and qPCR identifying 42 and 33 habitats to be positive for G. truncatula eDNA, respectively. G. truncatula eDNA was significantly less likely to be detected in habitats fully shaded by trees, those that contained black or dark brown soils and habitats that contained deep water pools (p < 0.05). Significantly higher G. truncatula eDNA concentrations were observed in habitats that tend to dry up during Summer (i.e., temporary habitats) (p < 0.05). ddPCR also identified five habitats to be positive for F. hepatica eDNA; however, questions remain regarding the utility of F. hepatica eDNA detection due to a lack of specificity toward infective F. hepatica larval stages. The results of this study inform of factors which influences G. truncatula distribution and ecology on pastures and also provided practical information for farmers to aid F. hepatica control in their flocks and herds

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore