67 research outputs found

    Holocene evolution of a barrier island system, Ria Formosa, South Portugal

    Get PDF
    Holocene evolution of the Ria Formosa barrier island system was studied through the examination of a large subsurface dataset acquired from 191 boreholes and five seismic refraction profiles. Two boreholes with total depths of 26 and 16.5 m were selected for a multi-proxy detailed laboratory analysis, including mean grain size distribution, organic matter (OM) content, color variation, shell identification, and benthic foraminifera assemblages. Selected cores are thought to be representative of the identified depositional sub-basins. Subsurface age data from 16 AMS C-14 dated samples were plotted against depth and resulted in a coherent age model of sedimentary infill. The system evolution was largely controlled by sediment availability, accommodation space, and Holocene sea level rise, first at a rapid rate of 7 mm/yr from 10 kcal yr BP to 7.25 kcal yr BP, followed by a slowdown to 1.1 mm/yr until present. A conceptual model for the origin and Holocene evolution of the Ria Formosa barrier island system implies three main steps, leading to the present system geomorphology: (1) marine flooding of incised palaeovalleys by the rapid transgression of palaeovalleys in the early Holocene(2) development of a proto-barrier island chain perched on Pleistocene detritic headlands and steeper interfluve areas during the early to middle Holoceneand (3) full development of the barrier islands chain and enclosing of the coastal lagoon, followed by the maturation of the system with subsequent siltation and salt marsh expansion from the middle Holocene until present. The onset of barrier system formation dates back to ca. 8 kcal yr BP, predating previously proposed age.SIHER project [PTDC/CTE-GIX112236/2009]EU Erasmus Mundus Joint Doctorate in Marine and Coastal Management (MACOMA) fellowship grant, under University of AlgarveEU Erasmus Mundus Joint Doctorate in Marine and Coastal Management (MACOMA) fellowship grant, under University of Cadi

    Culling-Induced Changes in Badger (Meles meles) Behaviour, Social Organisation and the Epidemiology of Bovine Tuberculosis

    Get PDF
    In the UK, attempts since the 1970s to control the incidence of bovine tuberculosis (bTB) in cattle by culling a wildlife host, the European badger (Meles meles), have produced equivocal results. Culling-induced social perturbation of badger populations may lead to unexpected outcomes. We test predictions from the ‘perturbation hypothesis’, determining the impact of culling operations on badger populations, movement of surviving individuals and the influence on the epidemiology of bTB in badgers using data dervied from two study areas within the UK Government's Randomised Badger Culling Trial (RBCT). Culling operations did not remove all individuals from setts, with between 34–43% of badgers removed from targeted social groups. After culling, bTB prevalence increased in badger social groups neighbouring removals, particularly amongst cubs. Seventy individual adult badgers were fitted with radio-collars, yielding 8,311 locational fixes from both sites between November 2001 and December 2003. Home range areas of animals surviving within removed groups increased by 43.5% in response to culling. Overlap between summer ranges of individuals from Neighbouring social groups in the treatment population increased by 73.3% in response to culling. The movement rate of individuals between social groups was low, but increased after culling, in Removed and Neighbouring social groups. Increased bTB prevalence in Neighbouring groups was associated with badger movements both into and out of these groups, although none of the moving individuals themselves tested positive for bTB. Significant increases in both the frequency of individual badger movements between groups and the emergence of bTB were observed in response to culling. However, no direct evidence was found to link the two phenomena. We hypothesise that the social disruption caused by culling may not only increase direct contact and thus disease transmission between surviving badgers, but may also increase social stress within the surviving population, causing immunosuppression and enhancing the expression of disease

    Controlling tick-borne diseases through domestic animal management: a theoretical approach

    Get PDF
    Vector-borne diseases are of global importance to human and animal health. Empirical trials of effective methods to control vectors and their pathogens can be difficult for practical, financial and ethical reasons. Here, therefore, we use a mathematical model to predict the effectiveness of a vector-borne disease control method. As a case study, we use the tick-louping ill virus system, where sheep are treated with acaricide in an attempt to control ticks and disease in red grouse, an economically important game bird. we ran the model under different scenarios of sheep flock sizes, alternative host (deer) densities, acaricide efficacies and tick burdens. The model predicted that, with very low deer densities, using sheep as tick mops can reduce the tick population and virus prevalence. However, treatment is ineffective above a certain threshold deer density, dependent on the comparative tick burden on sheep and deer. The model also predicted that high efficacy levels of acaricide must be maintained for effective tick control. This study suggests that benignly managing one host species to protect another host species from a vector and pathogen can be effective under certain conditions. It also highlights the importance of understanding the ecological complexity of a system, in order to target control methods only under certain circumstances for maximum effectiveness

    A multi-metric approach to investigate the effects of weather conditions on the demographic of a terrestrial mammal, the European badger (Meles meles)

    Get PDF
    Models capturing the full effects of weather conditions on animal populations are scarce. Here we decompose yearly temperature and rainfall into mean trends, yearly amplitude of change and residual variation, using daily records. We establish from multi-model inference procedures, based on 1125 life histories (from 1987 to 2008), that European badger (Meles meles) annual mortality and recruitment rates respond to changes in mean trends and to variability in proximate weather components. Variation in mean rainfall was by far the most influential predictor in our analysis. Juvenile survival and recruitment rates were highest at intermediate levels of mean rainfall, whereas low adult survival rates were associated with only the driest, and not the wettest, years. Both juvenile and adult survival rates also exhibited a range of tolerance for residual standard deviation around daily predicted temperature values, beyond which survival rates declined. Life-history parameters, annual routines and adaptive behavioural responses, which define the badgers’ climatic niche, thus appear to be predicated upon a bounded range of climatic conditions, which support optimal survival and recruitment dynamics. That variability in weather conditions is influential, in combination with mean climatic trends, on the vital rates of a generalist, wide ranging and K-selected medium-sized carnivore, has major implications for evolutionary ecology and conservation

    The Influence of Life History Milestones and Association Networks on Crop-Raiding Behavior in Male African Elephants

    Get PDF
    Factors that influence learning and the spread of behavior in wild animal populations are important for understanding species responses to changing environments and for species conservation. In populations of wildlife species that come into conflict with humans by raiding cultivated crops, simple models of exposure of individual animals to crops do not entirely explain the prevalence of crop raiding behavior. We investigated the influence of life history milestones using age and association patterns on the probability of being a crop raider among wild free ranging male African elephants; we focused on males because female elephants are not known to raid crops in our study population. We examined several features of an elephant association network; network density, community structure and association based on age similarity since they are known to influence the spread of behaviors in a population. We found that older males were more likely to be raiders than younger males, that males were more likely to be raiders when their closest associates were also raiders, and that males were more likely to be raiders when their second closest associates were raiders older than them. The male association network had sparse associations, a tendency for individuals similar in age and raiding status to associate, and a strong community structure. However, raiders were randomly distributed between communities. These features of the elephant association network may limit the spread of raiding behavior and likely determine the prevalence of raiding behavior in elephant populations. Our results suggest that social learning has a major influence on the acquisition of raiding behavior in younger males whereas life history factors are important drivers of raiding behavior in older males. Further, both life-history and network patterns may influence the acquisition and spread of complex behaviors in animal populations and provide insight on managing human-wildlife conflict

    From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management

    Get PDF
    Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions

    The dynamics of expanding mangroves in New Zealand

    Get PDF
    In contrast to the global trend of mangrove decline, New Zealand mangroves are rapidly expanding, facilitated by elevated sediment inputs in coastal waters as a consequence of large-scale land use changes following European settlement. New Zealand mangroves are at the southern limit of the global mangrove extent, which limits the tree height of Avicennia marina var. australasica, the only mangrove species present. Mangroves in New Zealand thrive in the sheltered environments of infilling drowned river valleys with abundant supply of fine terrigenous sediments, showing various stages of mangrove succession and expansion dynamics. Bio-physical interactions and carbon dynamics in these expanding temperate mangrove systems show similarities to, but also differ from those in tropical mangrove forests, for instance due to the limited height and complexity of the mangrove communities. Likewise, ecosystem services provided by New Zealand mangroves deviate from those offered by tropical mangroves. In particular, the association of mangrove expansion with the accumulation of (the increased supply of) fine sediments and the consequent change of estuarine ecosystems, has provoked a negative perception of mangrove expansion and subsequently led to mangrove clearance. Over recent decades, a body of knowledge has been developed regarding the planning and decision making relating to mangrove removal, yet there are still effects that are unknown, for example with respect to the post-clearance recovery of the original sandflat ecosystems. In this chapter we discuss the dynamics of New Zealand’s expanding mangroves from a range of viewpoints, with the aim of elucidating the possible contributions of expanding mangroves to coastal ecosystem services, now and in the future. This chapter also reviews current policies and practice regarding mangrove removal in New Zealand and addresses the (un)known effects of mangrove clearance. These combined insights may contribute to the development of integrated coastal management strategies that recognise the full potential of expanding mangrove ecosystems

    Spatial variation in carbon storage: a case study for Currambene Creek, NSW, Australia

    No full text
    Quantifying carbon storage in coastal wetland environments is important for identifying areas of high carbon sequestration value that could be targeted for conservation. This study combines remote sensing and sediment analysis to identify spatial variation in soil carbon storage for Currambene Creek, New South Wales, Australia to establish whether vegetation structure influences soil carbon storage in the upper 30 cm. Wetland vegetation was delineated to capture structural complexity within vegetation communities using Light detection and ranging (Lidar) point cloud data and aerial imagery with an object-based image analysis approach. Sediment cores were collected and analysed for soil carbon content to quantify below-ground carbon storage across the site. The total soil carbon storage in the upper 30 cm for the wetland (59.6 ha) was estimated to be 3933 ± 444 Mg C. Tall mangrove were found to have the highest total carbon storage (1420 ± 198 Mg C), however are particularly sensitive to changes in sea-level as they are positioned lowest in the intertidal frame. Conservation efforts targeted at protecting areas of high carbon sequestration, such as the tall mangrove, will lead to a greater contribution to carbon mitigation efforts
    corecore