72 research outputs found

    Climate change is predicted to cause population collapse in a cooperative breeder

    Get PDF
    It has been suggested that animals may have evolved cooperative breeding strategies in response to extreme climatic conditions. Climate change, however, may push species beyond their ability to cope with extreme climates, and reduce the group sizes in cooperatively breeding species to a point where populations are no longer viable. Predicting the impact of future climates on these species is challenging as modelling the impact of climate change on their population dynamics requires information on both group- and individual-level responses to climatic conditions. Using a single-sex individual-based model incorporating demographic responses to ambient temperature in an endangered species, the African wild dog Lycaon pictus, we show that there is a threshold temperature above which populations of the species are predicted to collapse. For simulated populations with carrying capacities equivalent to the median size of real-world populations (nine packs), extinction risk increases once temperatures exceed those predicted in the best-case climate warming scenario (Representative Concentration Pathway [RCP] 2.6). The threshold is higher (between RCP 4.5 and RCP 6.0) for larger simulated populations (30 packs), but 84% of real-world populations number <30 packs. Simulated populations collapsed because, at high ambient temperatures, juvenile survival was so low that packs were no longer recruiting enough individuals to persist, leading them to die out. This work highlights the importance of social dynamics in determining impacts of climatic variables on social species, and the critical role that recruitment can play in driving population-level impacts of climate change. Population models parameterised on long-term data are essential for predicting future population viability under climate change

    What wild dogs want: habitat selection differs across life stages and orders of selection in a wide-ranging carnivore

    Get PDF
    Habitat loss is a key threat to the survival of many species. Habitat selection studies provide key information for conservation initiatives by identifying important habitat and anthropogenic characteristics influencing the distribution of threatened species in changing landscapes. However, assumptions about the homogeneity of individual choices on habitat, regardless of life stage, are likely to result in inaccurate assessment of conservation priorities. This study addresses a knowledge gap in how animals at different life stages diverge in how they select habitat and anthropogenic features, using a free-ranging population of African wild dogs living in a human-dominated landscape in Kenya as a case study. Using GPS collar data to develop resource selection function and step selection function models, this study investigated differences between second order (selection of home range across a landscape) and third order (selection of habitat within the home range) habitat selection across four life history stages when resource requirements may vary: resident-non-denning, resident-heavily-pregnant, resident-denning and dispersing

    Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs

    Get PDF
    A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease

    A preliminary assessment of the wildlife trade in badgers (Meles leucurus and Arctonyx spp.) (Carnivora: Mustelidae) in South Korea

    Get PDF
    We provide a preliminary assessment of a previously overlooked wildlife trade, the legal trade in badgers (Meles leucurus and Arctonyx spp.) and badger-derived products in South Korea. A new phase of the trade emerged in the 1990s with the establishment of wildlife farms to supply demand for badger as an edible and medicinal resource, including as a substitute for Asiatic black bear (Ursus thibetanus), a CITES Appendix I species. We trace the continued existence of badger farms to supply trade between 2001-2020, supplemented by imported badger-derived products and some apparent illegal harvesting of wild Meles leucurus in South Korea. The range of badger-derived products available to consumers has diversified during the last two decades and now encompasses human food, traditional medicine, cosmetics, dietary supplements and accessories. We recommend improved monitoring and regulation of the trade, given that legal farming, and potential illegal wild harvest, may present important risks to: (i) wild Meles leucurus populations in South Korea and Arctonyx spp. populations in Asia, which are currently poorly monitored; (ii) the welfare of traded badgers, as territorial mammals with specific social and housing needs; (iii) human health, with mustelid farms now in greater focus as potential sources of novel zoonotic diseases

    Fencing affects African Wild Dog Movement Patterns and Population Dynamics

    Get PDF
    Wildlife fences are often considered an important tool in conservation. Fences are used in attempts to prevent human–wildlife conflict and reduce poaching, despite known negative impacts on landscape connectivity and animal movement patterns. Such impacts are likely to be particularly important for wide-ranging species, such as the African wild dog Lycaon pictus, which requires large areas of continuous habitat to fulfil its resource requirements. Laikipia County in northern Kenya is an important area for wild dogs but new wildlife fences are increasingly being built in this ecosystem. Using a long-term dataset from the area's free-ranging wild dog population, we evaluated the effect of wildlife fence structure on the ability of wild dogs to cross them. The extent to which fences impeded wild dog movement differed between fence designs, although individuals crossed fences of all types. Purpose-built fence gaps increased passage through relatively impermeable fences. Nevertheless, low fence permeability can lead to packs, or parts of packs, becoming trapped on the wrong side of a fence, with consequences for population dynamics. Careful evaluation should be given to the necessity of erecting fences; ecological impact assessments should incorporate evaluation of impacts on animal movement patterns and should be undertaken for all large-scale fencing interventions. Where fencing is unavoidable, projects should use the most permeable fencing structures possible, both in the design of the fence and including as many purpose-built gaps as possible, to minimize impacts on wide-ranging wildlife

    High temperatures and human pressures interact to influence mortality in an African carnivore

    Get PDF
    The impacts of high ambient temperatures on mortality in humans and domestic animals are well-understood. However much less is known about how hot weather affects mortality in wild animals. High ambient temperatures have been associated with African wild dog Lycaon pictus pup mortality, suggesting that high temperatures might also be linked to high adult mortality.We analyzed mortality patterns in African wild dogs radio-collared in Kenya (0°N), Botswana (20°S), and Zimbabwe (20°S), to examine whether ambient temperature was associated with adult mortality.We found that high ambient temperatures were associated with increased adult wild dog mortality at the Kenya site, and there was some evidence for temperature associations with mortality at the Botswana and Zimbabwe sites.At the Kenya study site, which had the highest human impact, high ambient temperatures were associated with increased risks of wild dogs being killed by people, and by domestic dog diseases. In contrast, temperature was not associated with the risk of snare-related mortality at the Zimbabwe site, which had the second highest human impact. Causes of death varied markedly between sites. Pack size was positively associated with survival at all three sites.These findings suggest that while climate change may not lead to new causes of mortality, rising temperatures may exacerbate existing anthropogenic threats to this endangered species, with implications for conservation. This evidence suggests that temperature-related mortality, including interactions between temperature and other anthropogenic threats, should be investigated in a greater number of species to understand and mitigate likely impacts of climate change

    A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain

    Get PDF
    This is the final version of the article. Available from the Royal Society via the DOI in this record.Bovine tuberculosis (bTB) is a very important disease of cattle in Great Britain, where it has been increasing in incidence and geographical distribution. In addition to cattle, it infects other species of domestic and wild animals, in particular the European badger (Meles meles). Policy to control bTB is vigorously debated and contentious because of its implications for the livestock industry and because some policy options involve culling badgers, the most important wildlife reservoir. This paper describes a project to provide a succinct summary of the natural science evidence base relevant to the control of bTB, couched in terms that are as policy-neutral as possible. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.The project was funded by the Oxford Martin School (part of the University of Oxford), and though many groups were consulted, the project was conducted completely independently of any stakeholder

    Saving the world’s terrestrial megafauna

    Get PDF
    From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the world’s largest carnivores (≄ 15 kg, n = 27) and 60% of the world’s largest herbivores (≄ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the world’s most iconic animals—such as gorillas, rhinos, and big cats (figure 2 top row)—and, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al. 2011). Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them

    Home range size of wild dogs in Kenya before, during, and after denning

    No full text
    Home range size (in sq km) of GPS-collared wild dogs, for 10-day periods before, during, and after denning in Kenya. Home range size was measured using Minimum Convex Polygons. Wild dog WDM123 was tracked through two denning periods
    • 

    corecore