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As an aid to the study of bovine tuberculosis (TB), a simple model
has been developed of an epidemic involving two species, cattle
and badgers. Each species may infect the other. The proportion of
animals affected is assumed relatively small so that the usual
nonlinear aspects of epidemic theory are avoided. The model is
used to study the long-run and transient effect on cattle of culling
badgers and the effect of a period without routine testing for TB,
such as occurred during the 2001 epidemic of foot-and-mouth
disease in Great Britain. Finally, by examining the changes in cattle
TB over the last 15 years, and with some other working assump-
tions, it is estimated that the net reproduction number of the
epidemic is �1.1. The implications for controlling the disease are
discussed.

animal ecology � epidemiology � mathematical model

Mathematical modeling of infectious disease, especially in
humans, has a long history (1). Two very different kinds

of dynamical model are simple outline and quasirealistic models.
The former aim to capture the essence of a complex situation in
a few key aspects and then to use these to explain the qualitative
patterns of behavior to be expected and even to give semiquan-
titative predictions. Quasirealistic models, by contrast, aim to get
much closer to reality by representing, almost inevitably in a
model implemented by computer rather than by mathematical
analysis, as many features of reality as is feasible. Despite the
attractions of greater realism, a common problem with such
models is the need to specify the values of a considerable number
of forms of dependence and the numerical values of unknown
parameters, often, as in the present instance, aspects about which
little is known. The consequent need for extensive and systematic
sensitivity analyses may undermine the usefulness of such models
and mean that such data as are available are consistent with
many different interpretations.

In the present work we consider a deterministic multispecies
transmission model of the former simpler type to describe
Mycobacterium bovis infection in cattle and badgers. After
setting out a fairly general model framework allowing both
within- and between-species transmission, we look at a number
of special situations corresponding in particular to interventions
on one or other species.

General Model Specification
We consider a reasonably homogeneous area such that at time
t there are X1(t) � C(t) infected cattle per km2 and X2(t) � B(t)
infected badgers per km2. We suppose that the proportions of
infected animals are relatively small, say �0.2, so that the
nonlinear effects characteristic of epidemic theory, because of
the depletion of the pool of susceptible animals, are not impor-
tant. This assumption seems reasonable because reports of more
than a small number of reactor cattle within individual herd
breakdowns are rare. Also, we do not distinguish between
infected and infectious animals, thus making the approximation

that all infected animals of a particular species are equally
infectious.

A major assumption is that of spatial homogeneity over the
area considered. This assumption means, in particular, that use
of the conclusions at a very local level would not be justified.

Let aij be the rate per unit time (usually a year) at which one
animal of species j infects animals of species i. Let animals of
species i be removed at a total rate ri and suppose that restocking
introduces new infected animals at rate si. Note that the removal
rate of cattle at time t, r1(t), includes both routine slaughter and
slaughter after identification of disease. We assume that al-
though both removal and immigration rates may be affected by
policy decisions or external conditions, they are constant over
defined periods.

Let A denote the matrix of the aij and X(t) � {X1(t), X2(t)}T.
Further, let R � diag(r1, r2) and S � {s1, s2}T. Then

dX� t��dt � �A � R�X � S. [1]

Therefore, if B � R � A, and if initially X(0) � X0, then we have
that

X� t� � B�1S � e�Bt�X0 � B�1S� ,

where the matrix exponential is computed through the spectral
decomposition B � H�H�1 with � � diag(�1, �2). Then

X� t� � B�1S � Hdiag�e��1t, e��2t�H�1�X0 � B�1S� .

Note that this discussion could be applied formally to any
number of species. Furthermore, four ‘‘species’’ could be used to
represent cattle and badgers in two geographical regions. This
metapopulation approach will not be explored here.

If, on the other hand, the number of infected badgers B(t) at
time t were externally inf luenced, for example by culling
(whether one-off or repeated), rather than determined by Eq. 1,
the resulting equation for C(t) is

dC�t��dt � �a11 � r1�C�t� � a12B�t� � s1�t�,

where it is convenient to allow also that the restocking rate may
vary over time.

Epidemiological Setting
Cattle herds are subject to regulations set out in the Animal
Health Act requiring regular tuberculosis (TB) tests. Each herd
is subjected to a parish-based testing interval of between 4 yr and
1 yr, where parishes with the lowest incidence are assigned
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4-yearly testing and parishes with the highest incidence are
assigned annual testing. Routine whole-herd tests are carried out
in accordance with the parish test interval, and additional tests
can be conducted at any time, for example, in response to
slaughterhouse checks or TB in neighboring herds. A herd is said
to experience a TB ‘‘breakdown’’ if one or more members of a
cattle herd fail the conventional TB skin test or show evidence
of TB lesions at slaughterhouse inspection.

In 2003, �58,000 herd tests (comprising �4.5 million cattle
tests) were performed in Great Britain, disclosing 3,219 new
herd breakdowns, just over half of which were subsequently
confirmed (2). As a result of these tests some 20,000 reactor
cattle, and �3,000 contacts, were identified and compulsorily
slaughtered, giving an average of 3.7 reactor cattle slaughtered
per breakdown (counting all breakdowns, new and ongoing,
recorded in 2003). For comparison, there were �9 million cattle
and calves in Great Britain at the time.

Badgers were first linked to cattle TB in the UK in 1971 when
M. bovis was isolated in a badger carcass. In response, badger
culling was undertaken in places where TB occurred, and in the
past 30 yr the culling strategies have changed several times (3, 4).
Initially farmers were licensed to cull badgers. From 1975–1981,
badgers were gassed in their setts by Ministry of Agriculture,
Fisheries and Food staff. This approach was replaced by cage
trapping, initially based on the ‘‘clean ring’’ strategy, designed to
identify and remove clusters of infected badgers. From 1986
culling was more limited in scope and took place only on land
used by cattle in which M. bovis was isolated. This form of culling
was intended solely as an ‘‘interim strategy’’ pending develop-
ment of a more selective culling policy (5) but continued until
1997 when a major review of TB control was undertaken (3).

Despite a number of reviews (3, 5, 6), the effectiveness of
badger-targeted strategies at reducing TB in cattle remains
uncertain, in particular because none of the historical badger
removal strategies was accompanied for comparison by a control
strategy of no culling. Following a recommendation of the Krebs
report (3), the Independent Scientific Group on Cattle TB was
set up and charged with designing and overseeing a large-scale
field trial aimed at evaluating two different approaches to badger
culling as a means of reducing TB incidence in cattle (7–10).

Parameters
For ease of interpretation, conclusions are mostly expressed in
terms of dimensionless parameters. In some cases, for example
the cross-infection rates, there is little or no information to
indicate what values are plausible. In others, plausible approx-
imate values can be given.

The removal rate for cattle depends on the average life of
cattle in the system when infection is not detected, the cattle
testing interval, and the sensitivity, p, of the skin test for TB.
With routine testing every d years, there are a number of possible
assumptions about repeat tests. One extreme is that a herd
breakdown not detected in one year will certainly be detected in
the next test. Another extreme is that the infected cattle not
detected on one occasion will not be detected at the next test
either. An intermediate assumption, and the one made here, is
that the same sensitivity applies each time. It then follows,
assuming infection starts at a random time between tests, that the
average interval between incidence and detection is

�d � �1�2 � �1 � p��p	d, [2]

where the second term on the right-hand side arises from the
geometric distribution of the number of retests needed. In fact the
testing after a suspect case follows a complicated set of rules, which
we do not attempt to model; probably Eq. 2 overestimates �d.

From Eq. 2, the average time between infection and detection
is d�2 if the test is perfect. Diagnostic test insensitivity in effect

increases the effective testing interval by a factor equal to
�d�(d�2) � 1 
 2(1 � p)�p. For example, with sensitivity p �
2�3, the ratio is equal to 2, so one-year testing is equivalent to
2-year testing with a perfectly sensitive test (see Table 1).

We base our estimate of �n, the mean time in the herd in the
absence of a detected breakdown, on the distribution of life in the
disease-free herd. Suppose that this quantity has probability density
f(x) and cumulative distribution function F(x) with mean and
coefficient of variation �f and CVf. Then, if infection occurs
randomly at a low rate independently of age, the probability density
of time between infection and routine removal in the absence of
testing is the equilibrium recurrence time distribution (11)

�1 � F�x�	��f .

Thus, the mean time between infection and routine removal is

�f �1 � CVf
2��2.

Finally, the removal rate of infected cattle is approximately

r1 � �n
�1 � �d

�1. [3]

We take the distribution of the age of cattle on routine
slaughter as applying to infected cattle that have not been
detected, leading to �n � 3 yr.

Equilibrium Theory
As the first of the special situations, suppose that the system is
in equilibrium so that the input of new infected animals just
replaces egress. The first component equation for the equilib-
rium values X0 � (C0, B0), shows that

C0 � �s1 � a12B0���r1 � a11�. [4]

There are two immediate consequences from this equation.
First, an equilibrium is possible if and only if r1 � a11, in practice
if r1 is appreciably greater than a11. With annual testing we
estimate that r1 is between 1.3 (if test sensitivity is 66.7%) and
1.7 (if test sensitivity is 80%). That is, the number of cattle
infected per year by one infected bovine, a11, must be appreciably
less than 1.3. Note that if this situation was not the case, one
would expect appreciable numbers of herd breakdowns with a
considerable number of reactor cattle. Second, the equilibrium
level is inversely proportional to (r1 � a11) and r1 is determined
by testing interval d and test sensitivity p.

Now suppose that the badger population is reduced to (1 �
k)B0 and held there by repeated culling and that all other aspects
of the system, including S, remain unchanged. Suppose further
that a new equilibrium for the number of infected cattle is
reached. The resulting value of C(t) is

Ck � �s1 � �1 � k�a12B0	��r1 � a11�.

Therefore, the proportional reduction in cattle infection is
determined from

Ck�C0 � �1 � �1 � k�IB	��1 � IB�, [5]

say. Here IB � a12B0�s1 is a measure of the relative influence of
badgers as compared with disease in cattle restocked into the
system. It is essentially the ratio of the number of cattle infected

Table 1. Ratio of effective to nominal testing interval induced by
test sensitivity p

p 0.50 0.60 0.70 0.80 0.90 0.95 1
Ratio 3.00 2.33 1.86 1.50 1.22 1.11 1.00
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by badgers per year to the number of infections in cattle brought
in from outside the system per year.

Table 2 gives Ck�C0 (Eq. 5) for a range of values of k and IB.
In this formulation the proportional effect of reducing, or

increasing, the badger population depends neither on the re-
moval rate, r1, nor on the cattle-to-cattle infection rate, a11,
within an area, although these do, of course, affect the actual
level attained. The level of reduction achieved in the badger
population would have to be maintained by repeated culling for
these results to apply. The value of IB is unknown.

In this discussion it is assumed that only the number of infected
badgers is changed. If, at the other extreme, the external
incidence rate s1 also were reduced by the same factor k then the
equilibrium level is reduced by that factor, too, assuming removal
rate and cattle-to-cattle transmission within the area remained
unchanged.

Time-Dependent Effect of Initial Culling: A Single Cull
To study the rate at which the equilibrium levels in the previous
discussion are achieved and to examine some other perturbations
of the system, we solve the original differential Eq. 1 in the form

C�t� � C0e���r1�t � �
0

t

e���r1�x�a12B�t � x� � s1�t � x�	dx,

where C0 is the initial value of C(t).
We examine a number of different situations. First, as in the

previous section, suppose that at t � 0 the system is in equilib-
rium corresponding to B(t) � B0 for t � 0, so that C0 is given by
Eq. 4 and that the number of infected badgers is instantaneously
reduced to (1 � k)B0 and thereafter returns to its initial level, the
return being represented for t � 0 by

B�t� � B0�1 � ke��t�.

Thus, after time 0.69��, the badger population will have returned
halfway to its original level, B0. The possibility of maintaining the
badger population permanently at its new level is represented by
� � 0.

The general solution now takes the form

C�t� � C0 � a12B0k�� � r1 � ���1�e��t � e���r1�t�.

Thus,

C�t��C0 � 1 �
kIB�1 � ��r1�

�1 � IB��1 � ��r1 � ��r1�
�e��t � e���r1�t�.

[6]

The function C(t) reaches a minimum after time

�� � r1 � ���1 log����r1 � ��	 ,

and then returns toward its initial value C0. If the two timescales
determined by cattle aspects, r1 � �, and by badger aspects � are
very different, the more rapid timescale dominates behavior.

This equation specifies prevalence as a function of time. In
some ways, incidence, that is the rate of occurrence of new
infections, although not directly observable, is more relevant,
and this rate is

dC�t��dt � r1C�t� � r1C0 � a12B0�r1 � k���r1 � � � ���1e��t

� a12B0�r1 � kr1 � k��

��r1 � � � ���1e���r1�t .

When divided by the equilibrium rate r1C0 this value is

1 �
IB�1 � k��r1��1 � ��r1�

�1 � IB��1 � ��r1 � ��r1�
e��t

�
IB�1 � k � k��r1��1 � ��r1�

�1 � IB��1 � ��r1 � ��r1�
e���r1�t. [7]

Thus, immediately after the reduction in the number of
badgers, the rate of new infections is reduced from r1C0 by the
factor

1 �
kIB�1 � ��r1�

�1 � IB�
.

Time-Dependent Solution: A Maintained Cull
Next suppose that at time t � 0 the testing frequency is changed
from every d years to every d� years so that the removal rate
changes from r1 to r�1, B0 and s1 remaining unchanged. Then from
Eq. 4

C�t� � C�0 � �C0 � C�0�e���r��t,

where C�0 is the equilibrium level of C(t) at the new testing
frequency. In fact

C�0�C0 � �r1 � ����r�1 � ��. [8]

Equilibrium requires that the removal rates exceed � and if that
state were reached, Eq. 8 shows that the equilibrium level of
prevalence achieved would be approximately inversely propor-
tional to the removal rate.

Time-Dependent Solution: Interruption of Operations
Finally, suppose that, starting from equilibrium, there is a period
(0, t0) in which there is no removal or restocking, but infection
by badgers and by cattle-to-cattle transmission in the area
continues. Then, after time t0 the number of infected animals is
given by the solution of the full set of equations and is

�C0 � a12B0���e�t0 � a12B0��. [9]

Suppose then that normal testing and restocking resumed. Then
after a further time t

C�t0 � t� � ��C0 � a12B0���e�t0 � a12B�� � C0	e���r1�t � C0 .

[10]

Therefore,

C�t0 � t�
C0

� 1 �
r1�IB � ��r1�

��IB � 1�
�e�t0 � 1�e��r1���t. [11]

If �t0 is small, this ratio is approximately

Table 2. Ratio Ck�C0 (Eq. 5) of infected animals to initial level
after reducing badger level by factor k as a function of the
badger influence ratio IB

k

IB

0.10 0.50 1.00 2.00 5.00 10.00

0.2 0.98 0.93 0.90 0.87 0.83 0.82
0.5 0.95 0.83 0.75 0.67 0.58 0.54
0.8 0.93 0.73 0.60 0.47 0.33 0.27
1 0.91 0.67 0.50 0.33 0.16 0.09
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1 �
r1�IB � ��r1�

�IB � 1�
t0e��r1���t.

This situation corresponds to the restriction of livestock
movements between farms and the suspension of routine tuber-
culin skin testing of cattle during the foot-and-mouth disease
epidemic in the United Kingdom in 2001.

Conditions for Epidemic Progression
So far, much of the discussion has centered around the notion of
a system in equilibrium and suffering relatively minor deviations
from that equilibrium. The condition for epidemic growth,
essentially that the net reproduction rate exceeds one, is that the
matrix B � R � A have at least one negative eigenvalue. This
negative eigenvalue would imply an exponential increase in
prevalence in both species, although of course the effect might
be numerically small in one of the species.

Numerical Results Based on Model
The results sketched above depend on a limited number of
unknown parameters. One of the functions of simple models
such as this one is in fact to highlight the features of the system
most likely to have a big impact on the outcome. An example is
the index IB influencing the outcome of a permanent reduction
in the number of infected badgers, and another is k, the
efficiency of culling. As has already been mentioned, the amount
of information available about all of the parameters is limited,
and study of a range of parameter values is thus essential. We
can, however, obtain approximate relevant ranges by the fol-
lowing arguments.

To set out the numerical results, it is helpful to use dimen-
sionless units, although for substantive interpretation it is usually
necessary to convert back to natural units. Thus, we set r1t � �
so that � is a dimensionless timescale determined by the replace-
ment rate r1. Further, we define l � ��r1 and v � ��r1, thereby
expressing the cattle-to-cattle transmission rate and the badger
return rate relative to r1.

First, for the most part we assume � is small compared with
r1, i.e., that � is small. Were � not small, most outbreaks in a farm
would be multiple and often involve whole herd breakdowns.
These are, however, relatively rare.

For interpreting � in natural time units, typically years, we
have to estimate r1. We take a diagnostic test sensitivity of p �
2�3, this value corresponding broadly to reports in the liter-
ature (12, 13) to obtain the effective removal rate as r � 1.3
yr�1. Lower sensitivity would imply decreased r1, and it is clear
from Eq. 4 and other formulas that this change could sub-
stantially increase C(t). If the badger population returns to its
equilibrium level at a rate of �20% per year, then � � 0.23
yr�1. For most purposes, therefore, we show functions of time
as functions of � at a range of values of IB and the culling
fraction k.

The effect of culling on the equilibrium level of TB is shown
in simple form in Table 2. The corresponding standardized
prevalence and incidence curves are shown in Figs. 1 and 2 as
functions of dimensionless time � for selected values of IB, k, and
l � ��r1. The badger return rate v � ��r1 has been fixed at 0.17.
In the standardized time measure �, a unit of time corresponds
to �0.75 yr, i.e., � � 4 translates to 3 yr.

Both prevalence and incidence fall rapidly after culling to a
level determined largely by the efficiency of culling, k, and by the
index of badger activity, IB. They then return slowly to their
initial level. This result implies that repeat culling at intervals of
perhaps five dimensionless units should hold prevalence close to
its minimum level. Clearly a more refined calculation of the
effects of repeat culling would be possible.

Eqs. 9–11 were considered to assess the effect of a 9-month
cessation of testing during the British foot-and-mouth disease
epidemic. In particular, Eq. 11 shows the relative prevalence
after resumption of normal procedures. Fig. 3 shows this quantity
as a function of time for selected values of IB and l � ��r1. For
the range of values considered an initial increase in prevalence
by a factor of up to 2 is to be expected followed by a relatively
rapid decrease back to the equilibrium level.

Estimation of the Basic Reproductive Number
Consider the growth of the epidemic in cattle over a reasonably
large and homogeneous region. Let C(t) be the number of
infected cattle at time t. Suppose that they are removed by
detection and routine removal at rate r1 per year. With annual
testing at 2�3 test sensitivity and ‘‘usual’’ demographic proper-
ties, r1 is �1.3 yr�1.

Assume that the proportion of animals affected is low and that
there is a new infection rate of � per year per infected animal.
Note that these new infections arise from cattle-to-cattle trans-
mission within a herd and by infection by cattle brought in from
a source with about the same infection rate. In addition, suppose

Fig. 1. The standardized prevalence of TB in cattle (Eq. 6) as a function of
time, �, since culling; the proportion by which the badger population was
reduced, k; the relative cattle-to-cattle transmission rate, l; and a measure of
the relative influence of badgers as compared with disease in cattle restocked
into the system, IB.

Fig. 2. The standardized incidence of TB in cattle herds (Eq. 7) as a function
of time, �, since culling; the proportion by which the badger population was
reduced, k; the relative cattle-to-cattle transmission rate, l; and a measure of
the relative influence of badgers as compared with disease in cattle restocked
into the system, IB.
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that there is infection at rate 	(t) from an external source, which
here we will take to be wildlife.

We then have the differential equation

dC�t��dt � �� � r1�C�t� � 	�t�, [12]

with solution

C�t� � C0e���r1�t � �
0

t

	�t � u�e���r1�udu.

There is now the difficulty that little is known about the
external infection rate 	(t). We examine two possibilities. One is
to suppose that 	(t) is constant, equal to 	, say. Then

C�t� � �C0 � 	��� � r1�	e���r1�t � 	��� � r1�. [13]

and the growth is superexponential.
The second possibility, at least consistent with the general

model of Eq. 12, is to suppose that 	(t) � 
e(��r1)t, i.e., that the
epidemic in wildlife roughly parallels that in cattle. Then

C�t� � C0e���r1�t�1 � 
t�, [14]

which also is superexponential, suggesting that empirical dis-
crimination between the two forms may be difficult.

If effective estimates can be obtained of (� � r1) and either 	
or 
, the following tentative implications can be made:

Y the net reproduction number is ��r1;
Y the effect on the epidemic of changes in r1, for example more

frequent and�or more sensitive testing, can be drawn;
Y the fractional reduction in � needed to influence the epidemic

can be assessed; and
Y ��(� 
 	) is the proportion of the epidemic that is internally

rather than externally driven.

Eqs. 13 and 14 were fitted separately to TB incidence data
(based on the numbers of new herd incidents, both confirmed
and unconfirmed) from 1986 to 2000 from England and Wales
as a whole, from the Western Region (Cornwall, Devon, Dorset,
Gloucestershire, Hereford and Worcester, Avon, Shropshire,
Somerset, Isles of Scilly, and Wiltshire), and from the rest of
Great Britain (i.e., not in the Western Region). Both models
fitted very well, as would be anticipated given the relatively small

number of years of data available and the availability of three
adjustable parameters. See Fig. 4.

Formal confidence limits for the parameters 	 and 
 are quite
wide, but those for the more interesting parameter combination
� � r1 and the net reproduction number ��r1 are narrow. Major
uncertainties in these estimates relate more to the highly ideal-
ized assumptions underlying the model and in addition to those
involved in specifying a value for the removal rate r1.

The various estimates are summarized in Table 3.
Because the two simple models fit the data similarly well, we

cannot distinguish the relative importance of badger-to-cattle
transmission on this basis or determine which set of estimates in
Table 3 are to be preferred. Fortunately, however, the estimates
of the net reproduction numbers vary little depending on which
model was fitted. In all cases the true skin-test sensitivity was
assumed to be 66.7% over the period under analysis, and the test
frequency was assumed to be annual.

If the true skin-test sensitivity were instead 80%, the estimates
are slightly reduced. Thus, for Great Britain as a whole, the net
reproduction number is estimated to be 1.07 based on Eq. 13 and
1.06 based on Eq. 14. For the Western Region, the corresponding
estimates are 1.09 based on Eq. 13 and 1.08 from Eq. 14. Outside
the Western Region, the estimates are lower: 1.03 based on Eq.
13 and 1.02 from Eq. 14. Typical formal 95% confidence ranges
are �0.02, but as noted above this width gives a misleading
impression of accuracy.

Another source of uncertainty is the best assumption regard-
ing overall testing frequency in each region given that in fact
testing frequency was determined in a parish basis with the
highest incidence areas having the most frequent testing. If
testing every 2 yr was a better approximation to the testing that
took place in the area outside the Western Region, then the
estimates of net reproduction rate are increased to 1.06 based on
Eq. 13 and 1.04 based on Eq. 14, assuming 66.7% test sensitivity.

For each estimate (which is dependent on the assumed level
of test sensitivity and overall testing interval), one can obtain the
threshold of sensitivity or testing frequency that must be
achieved to drop the net reproduction rate of �1 (and thus
reduce the case numbers year on year). Specifically, this thresh-

Fig. 3. The standardized prevalence of TB in cattle herds (Eq. 11) after a
9-month cessation of testing and restocking as a function of time, �, since
resumption of skin testing and restocking of cattle; the relative cattle-to-cattle
transmission rate, l; and a measure of the relative influence of badgers as
compared with disease in cattle restocked into the system, IB.

Fig. 4. The number of TB herd incidents each year in Great Britain along with
the indistinguishable model fits based on Eqs. 13 and 14.

Table 3. Estimates of � � r1, �, and � (in yr�1) and the net
reproduction number ��r1 for various regions

Region � � r1 ��r1 	 


Based on Eq. 13
Great Britain 0.125 1.09 8.5 —
Western region 0.150 1.11 0.0 —
Outside the Western region 0.053 1.04 14.1 —

Based on Eq. 14
Great Britain 0.096 1.07 — 0.059
Western region 0.135 1.10 — 0.016
Outside the Western region 0.030 1.02 — 0.177
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old is obtained by estimating (� � r1) from fitting the data,
obtaining the estimate of �, denoted �̂, by subtraction based on
the r1 value obtained from the assumed testing frequency and
test sensitivity. The potential net reproduction corresponding
to future alternative testing frequency d� and�or test sensitivity
p� is

�̂

1��n � d��1��1�2 � �1 � p���p�	
.

For example, if the true test sensitivity over the period
analyzed was 66.7% and testing had been annual in the Western
Region, then an increase in test sensitivity to �73% would be
sufficient to drop the reproduction rate to �1. Alternatively, if
the true test sensitivity over the period analyzed was 80% and
testing was annual in the Western Region, then an increase in test
sensitivity to �85% would be sufficient. Finally, if the true test
sensitivity over the period analyzed was 90% and testing was
annual in the Western Region, then an increase in test sensitivity
to �94% would be sufficient. Alternatively, in each of these
cases, an increase in testing from annual to every 10 months was
sufficient to drop the reproduction rate to �1.

These illustrative results demonstrate that although the net
reproduction number is clearly �1, it is sufficiently close to 1 that
relatively modest improvements either in test performance or
testing frequency would be sufficient to bring the epidemic under
control, under the highly idealized assumptions made in this
model.

Discussion and Further Developments
The estimates for net reproduction number for TB in cattle ranged
from 1.02 to 1.11. Published estimates for the basic reproduction
number for M. bovis infections wildlife species have varied consid-
erably between and within species partly as a function of density: 1.2
in badgers in Great Britain (14), 1.6–2.1 in brushtail possums in
New Zealand (15, 16), and 0.2–1.2 in ferrets in New Zealand (17).

For comparison, the basic reproduction number for human TB in
England and Wales dropped from �3 in 1900 to 2 by 1950 and fell
to �1 in �1960, with the net reproduction number remaining at �1
from 1900 to 1950 (18).

There are many possible extensions of the above analysis. For
example, spatial aspects can be represented by having a larger
discrete set of intercommunicating systems, each of the above
type supplemented by some possibility of transmission of disease
from one site to another. There are no mathematical difficulties
in analyzing such a model; we have not done so because of the
absence of the data needed to specify the numerical values of the
necessary parameters. Detail on variation in testing frequency in
different regions also could be analyzed simultaneously in a
similar set of expanded transmission equations.

By using analytical solutions to relatively simple transmission
models, this analysis provides clear estimates of the net repro-
duction number of bovine TB in Great Britain. This number can
be used to predict the impact of additional control measures such
as increased testing frequency (whether on a parish or regional
basis or through the imposition of additional restrictions on
cattle herds with overdue skin tests) and�or increased test
sensitivity (whether through the improved application of the
tuberculin skin test, wider use of the so-called ‘‘severe interpre-
tation’’ of the skin test, or parallel use of other diagnostic tools
such as the 
-IFN test).

Although useful insight can certainly be gained from more
complex, geographically specific models such as that used to
analyze data on cattle movements (19) or to simulate the impact
of badger-control strategies on TB incidence in cattle (20–22),
the key benefit of models such as those presented here is the
logical transparency and relative simplicity of the results. This
approach is in keeping with the preference for simpler model
formulations, in the face of parameter and other uncertainties,
expressed by the Royal Society Report Infectious Diseases of
Livestock (23). Clearly, as more data become available, the
model can be extended.
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