246 research outputs found

    Down the Drain: Stormwater Management effects on the Quality of the Westhampton Lake

    Get PDF
    This paper examines incidents of illicit discharges on the University of Richmond campus as outlined by the City of Richmond\u27s MS4 permit. Illicit discharges contaminate the Westhampton Lake by flowing from our storm drains directly into the Westhampton Lake. I detected incidents of illicit discharges by performing visual inspections as guided by numerous scholarly articles. The visual inspections were done with a special consideration of land use on campus. Along with the visual inspections, I inspected the storm drains during a dry weather event to find whether there was any flow during this period. In this study, I found several incidents of illicit discharges in the following area: animal feces, construction debris, litter, and flow on dry weather days. Animal feces, which adds E. Coli to water, was found throughout campus and especially near the Westhampton Lake where the geese reside. Construction runoff, which increases sediment, was found near Modlin, on New Fraternity Row, and near Marsh hall. Litter, which disrupts species and depletes oxygen, was found all around campus and even in a storm drain. Finally, I found one incident of dry weather flow near Weinstein Hall. The University of Richmond should improve education and regulation of these common incidents of illicit discharge to improve the quality of the Westhampton Lake. Paper prepared for the Environmental Studies Senior Seminar/Geography Capstone. Faculty Advisor: Dr. Peter Smallwoo

    IgE in the diagnosis and treatment of allergic disease

    Get PDF
    Traditionally, the concept of allergy implied an abnormal response to an otherwise benign agent (eg, pollen or food), with an easily identifiable relationship between exposure and disease. However, there are syndromes in which the relationship between exposure to the relevant allergen and the “allergic” disease is not clear. In these cases the presence of specific IgE antibodies can play an important role in identifying the relevant allergen and provide a guide to therapy. Good examples include chronic asthma and exposure to perennial indoor allergens and asthma related to fungal infection. Finally, we are increasingly aware of forms of food allergy in which the relationship between exposure and the disease is delayed by 3 to 6 hours or longer. Three forms of food allergy with distinct clinical features are now well recognized. These are (1) anaphylactic sensitivity to peanut, (2) eosinophilic esophagitis related to cow’s milk, and (3) delayed anaphylaxis to red meat. In these syndromes the immunology of the response is dramatically different. Peanut and galactose α-1,3-galactose (alpha-gal) are characterized by high- or very high-titer IgE antibodies for Ara h 2 and alpha-gal, respectively. By contrast, eosinophilic esophagitis is characterized by low levels of IgE specific for milk proteins with high- or very high-titer IgG4 to the same proteins. The recent finding is that patients with alpha-gal syndrome do not have detectable IgG4 to the oligosaccharide. Thus the serum results not only identify relevant antigens but also provide a guide to the nature of the immune response

    Developments in the field of clinical allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part II

    Full text link
    In this article, we describe developments in the field of clinical allergy as described by Clinical and Experimental Allergy in 2018; epidemiology, asthma and rhinitis, clinical allergy and allergens are all covered.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153257/1/cea13535.pd

    T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects

    Get PDF
    Lipid transfer proteins (LTPs), particularly peach Pru p 3, are the most relevant plant food allergens in the South of Europe, and, therefore, their allergic properties have been extensively studied. However, neither T-cell epitopes nor their effect on the patients’ T-cell response has been investigated in any member of the LTP panallergen family. The objective of the present study was to map the major T-cell epitopes of Pru p 3, as well as to evaluate their induced T-cell response in peach-allergic versus control subjects. Thus, peripheral blood mononuclear cells (PBMCs) from 18 peach-allergic patients and Pru p 3-specific T-cell lines (TCLs) from 9 of them were cultured with Pru p 3 and with a panel of 17 derived peptides (10-mer overlapping in 5 amino acids representing the full sequence of Pru p 3). Proliferation in 5-day assays was carried out via tritiated-thymidine incorporation, while IL4 and IFNγ production was assessed via sandwich enzyme-linked immunosorbent tests (ELISA) of TCL culture supernatants. The results were compared to those obtained from 10 non-peach allergic control volunteers. Two consecutive peptides showed the highest activation capacity. About 74% of PBMCs and TCLs recognized them, forming a single T-epitope: Pru p 365–80. Additionally, other specific T-cell epitopes were observed. Pru p 325–35 was detected by more than 60% of TCLs from peach-allergic patients, and Pru p 345–55 only activated PBMCs from control subjects. Interestingly, TCLs from patients were associated with a Th2-type, whereas control TCLs presented a Th1-type cytokine response. The major immunogenic T-cell epitope identified in Pru p 3, Pru p 365–80, is a good candidate to develop new vaccines for hypersensitivity reactions associated with LTP allergens from Rosaceae fruits

    The Chitin Connection

    Get PDF
    Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall. Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Findings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in supporting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the induction of chitinases, and asthma

    Combining Network Modeling and Gene Expression Microarray Analysis to Explore the Dynamics of Th1 and Th2 Cell Regulation

    Get PDF
    Two T helper (Th) cell subsets, namely Th1 and Th2 cells, play an important role in inflammatory diseases. The two subsets are thought to counter-regulate each other, and alterations in their balance result in different diseases. This paradigm has been challenged by recent clinical and experimental data. Because of the large number of genes involved in regulating Th1 and Th2 cells, assessment of this paradigm by modeling or experiments is difficult. Novel algorithms based on formal methods now permit the analysis of large gene regulatory networks. By combining these algorithms with in silico knockouts and gene expression microarray data from human T cells, we examined if the results were compatible with a counter-regulatory role of Th1 and Th2 cells. We constructed a directed network model of genes regulating Th1 and Th2 cells through text mining and manual curation. We identified four attractors in the network, three of which included genes that corresponded to Th0, Th1 and Th2 cells. The fourth attractor contained a mixture of Th1 and Th2 genes. We found that neither in silico knockouts of the Th1 and Th2 attractor genes nor gene expression microarray data from patients with immunological disorders and healthy subjects supported a counter-regulatory role of Th1 and Th2 cells. By combining network modeling with transcriptomic data analysis and in silico knockouts, we have devised a practical way to help unravel complex regulatory network topology and to increase our understanding of how network actions may differ in health and disease
    corecore