602 research outputs found
The Composition of Dust in Jupiter-Family Comets as Inferred from Infrared Spectroscopy
We review the composition of Jupiter-family comet dust as inferred from
infrared spectroscopy. We find that Jupiter-family comets have 10 micron
silicate emission features with fluxes roughly 20-25% over the dust continuum
(emission strength 1.20-1.25), similar to the weakest silicate features in Oort
Cloud comets. We discuss the grain properties that change the silicate emission
feature strength (composition, size, and structure/shape), and emphasize that
thermal emission from the comet nucleus can have significant influence on the
derived silicate emission strength. Recent evidence suggests that porosity is
the dominant parameter, although more observations and models of silicates in
Jupiter-family comets are needed to determine if a consistent set of grain
parameters can explain their weak silicate emission features. Models of 8 m
telescope and Spitzer Space Telescope observations have shown that
Jupiter-family comets have crystalline silicates with abundances similar to or
less than those found in Oort Cloud comets, although the crystalline silicate
mineralogy of comets 9P/Tempel and C/1995 O1 (Hale-Bopp) differ from each other
in Mg and Fe content. The heterogeneity of comet nuclei can also be assessed
with mid-infrared spectroscopy, and we review the evidence for heterogeneous
dust properties in the nucleus of comet 9P/Tempel. Models of dust formation,
mixing in the solar nebula, and comet formation must be able to explain the
observed range of Mg and Fe content and the heterogeneity of comet 9P/Tempel,
although more work is needed in order to understand to what extent do comets
9P/Tempel and Hale-Bopp represent comets as a whole.Comment: 21 pages, 4 figures, 2 tables. Accepted for publication in Planetary
and Space Scienc
CULTURAL COMMUNITY, COHESION AND CONSTRAINT: DYNAMICS OF LIFE SATISFACTION AMONG AGED FILIPINO MEN OF HAWAII
In contrast to other elderly Asian-Americans (notably Japanese Americans and Chinese Americans), relatively little is known about aged Filipino Americans (Kalish & Yuen, 1971). This may be partly a function of their population size, as the Filipino aged in America are considerably less numerous than the elderly Japanese and Chinese Americans; the 1970 U.S. Censes (Census) of the Population finds only 21,249 Filipinos aged 65 and over in the U.S., 82% of them men. In addition, low economic and political status, recency of arrival and relative lack of militancy may contribute to this inattention. Kalish and Moriwaki (1973), focusing on elderly Chinese and Japanese Americans, explained their emphasis on the former and apologized for ignoring the Filipino American aged, noting that they understood much less about them
Crystalline Silicates in Comets: Modeling Irregularly-Shaped Forsterite Crystals and Its Implications on Condensation Conditions
Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction
Mid-Infrared Spectrophotometric Observations of Fragments B and C of Comet 73P/Schwassmann-Wachmann 3
We present mid-infrared spectra and images from the GEMINI-N (+Michelle)
observations of fragments SW3-[B] and SW3-[C] of the ecliptic (Jupiter Family)
comet 73P/Schwassmann-Wachmann 3 pre-perihelion. We observed fragment B soon
after an outburst event (between 2006 April 16 - 26 UT) and detected
crystalline silicates. The mineralogy of both fragments was dominated by
amorphous carbon and amorphous pyroxene. The grain size distribution (assuming
a Hanner modified power-law) for fragment SW3-[B] has a peak grain radius of
a_p ~ 0.5 micron, and for fragment SW3-[C], a_p ~ 0.3 micron; both values
larger than the peak grain radius of the size distribution for the dust ejected
from ecliptic comet 9P/Tempel 1 during the Deep Impact event (a_p = 0.2 micron.
The silicate-to-carbon ratio and the silicate crystalline mass fraction for the
submicron to micron-size portion of the grain size distribution on the nucleus
of fragment SW3-[B] was 1.341 +0.250 -0.253 and 0.335 +0.089 -0.112,
respectively, while on the nucleus of fragment SW3-[C] was 0.671 +0.076 -0.076
and 0.257 +0.039 -0.043, respectively. The similarity in mineralogy and grain
properties between the two fragments implies that 73P/Schwassmann-Wachmann 3 is
homogeneous in composition. The slight differences in grain size distribution
and silicate-to-carbon ratio between the two fragments likely arises because
SW3-[B] was actively fragmenting throughout its passage while the activity in
SW3-[C] was primarily driven by jets. The lack of diverse mineralogy in the
fragments SW3-[B] and SW3-[C] of 73P/Schwassmann-Wachmann 3 along with the
relatively larger peak in the coma grain size distribution suggests the parent
body of this comet may have formed in a region of the solar nebula with
different environmental properties than the natal sites where comet C/1995 O1
(Hale-Bopp) and 9P/Tempel 1 nuclei aggregated.Comment: 31 pages, 5 figure, accepted for publication in A
Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size
We compute the absorption efficiency (Qabs) of forsterite using the discrete
dipole approximation (DDA) in order to identify and describe what
characteristics of crystal grain shape and size are important to the shape,
peak location, and relative strength of spectral features in the 8-40 {\mu}m
wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical
polyhedral grain shapes with a_eff = 0.1 {\mu}m. The shape characteristics
identified are: 1) elongation/reduction along one of three crystallographic
axes; 2) asymmetry, such that all three crystallographic axes are of different
lengths; and 3) the presence of crystalline faces that are not parallel to a
specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids.
Elongation/reduction dominates the locations and shapes of spectral features
near 10, 11, 16, 23.5, 27, and 33.5 {\mu}m, while asymmetry and tips are
secondary shape effects. Increasing grain sizes (0.1-1.0 {\mu}m) shifts the 10,
11 {\mu}m features systematically towards longer wavelengths and relative to
the 11 {\mu}m feature increases the strengths and slightly broadens the longer
wavelength features. Seven spectral shape classes are established for
crystallographic a-, b-, and c-axes and include columnar and platelet shapes
plus non-elongated or equant grain shapes. The spectral shape classes and the
effects of grain size have practical application in identifying or excluding
columnar, platelet or equant forsterite grain shapes in astrophysical environs.
Identification of the shape characteristics of forsterite from 8-40 {\mu}m
spectra provides a potential means to probe the temperatures at which
forsterite formed.Comment: 55 pages, 15 figure
Spitzer Observations of Comet 67P/Churyumov-Gerasimenko at 5.5-4.3 AU From the Sun
We report Spitzer Space Telescope observations of comet
67P/Churyumov-Gerasimenko at 5.5 and 4.3 AU from the Sun, post-aphelion. Comet
67P is the primary target of the European Space Agency's Rosetta mission. The
Rosetta spacecraft will rendezvous with the nucleus at heliocentric distances
similar to our observations. Rotationally resolved observations at 8 and 24
microns (at a heliocentric distance, rh, of 4.8 AU) that sample the size and
color-temperature of the nucleus are combined with aphelion R-band light curves
observed at the Very Large Telescope (VLT) and yield a mean effective radius of
2.04 +/- 0.11 km, and an R-band geometric albedo of 0.054 +/- 0.006. The
amplitudes of the R-band and mid-infrared light curves agree, which suggests
that the variability is dominated by the shape of the nucleus. We also detect
the dust trail of the comet at 4.8 and 5.5 AU, constrain the grain sizes to be
less than or similar to 6 mm, and estimate the impact hazard to Rosetta. We
find no evidence for recently ejected dust in our images. If the activity of
67P is consistent from orbit to orbit, then we may expect the Rosetta
spacecraft will return images of an inactive or weakly active nucleus as it
rendezvous with the comet at rh = 4 AU in 2014.Comment: 19 pages, 2 tables, 10 figures. Accepted for publication in the
Astronomical Journa
Exozodiacal Dust Workshop
The purpose of the workshop was to understand what effect circumstellar dust clouds will have on NASA's proposed Terrestrial Planet Finder (TPF) mission's ability to search for terrestrial-sized planets orbiting stars in the solar neighborhood. The workshop participants reviewed the properties of TPF, summarized what is known about the local zodiacal cloud and about exozodiacal clouds, and determined what additional knowledge must be obtained to help design TPF for maximum effectiveness within its cost constraint. Recommendations were made for ways to obtain that additional knowledge, at minimum cost. The workshop brought together approximately 70 scientists, from four different countries. The active participants included astronomers involved in the study of the local zodiacal cloud, in the formation of stars and planetary systems, and in the technologies and techniques of ground- and space-based infrared interferometry. During the course of the meeting, 15 invited talks and 20 contributed poster papers were presented, and there were four working sessions. This is a collection of the invited talks, contributed poster papers, and summaries of the working sessions
DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction
Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk
Micrometoric Impact Effects: Peak Pressure versus Spectral Variation
At the Experimental Impact Laboratory at NASA Johnson Space Center, we have investigated the surface properties of asteroids caused by collisions in the mid-infrared (2.5 to 16 microns) by impacting forsterite and enstatite across a range of velocities (as predicted by the Nice Model) and at varying temperatures. The crystal structure in these minerals can be deformed by the shock wave from the impact as well as sheared into smaller particle sizes. Our current focus is on the differing effects between 2.3 and 2.6 km/sec, as well as the differences between a cold sample at -20C and a room temperature sample at 25C. We find that the spectral variation and crystal deformation varies non-linearly with the peak shock pressure
- …