423 research outputs found

    The Approach to Ergodicity in Monte Carlo Simulations

    Get PDF
    The approach to the ergodic limit in Monte Carlo simulations is studied using both analytic and numerical methods. With the help of a stochastic model, a metric is defined that enables the examination of a simulation in both the ergodic and non-ergodic regimes. In the non-ergodic regime, the model implies how the simulation is expected to approach ergodic behavior analytically, and the analytically inferred decay law of the metric allows the monitoring of the onset of ergodic behavior. The metric is related to previously defined measures developed for molecular dynamics simulations, and the metric enables the comparison of the relative efficiencies of different Monte Carlo schemes. Applications to Lennard-Jones 13-particle clusters are shown to match the model for Metropolis, J-walking and parallel tempering based approaches. The relative efficiencies of these three Monte Carlo approaches are compared, and the decay law is shown to be useful in determining needed high temperature parameters in parallel tempering and J-walking studies of atomic clusters.Comment: 17 Pages, 7 Figure

    The role of exploitation in the establishment of mutualistic microbial symbioses

    Get PDF
    Evolutionary theory suggests that the conditions required for the establishment of mutualistic symbioses through mutualism alone are highly restrictive, often requiring the evolution of complex stabilising mechanisms. Exploitation, whereby initially the host benefits at the expense of its symbiotic partner and mutual benefits evolve subsequently through trade-offs, offers an arguably simpler route to the establishment of mutualistic symbiosis. In this review, we discuss the theoretical and experimental evidence supporting a role for host exploitation in the establishment and evolution of mutualistic microbial symbioses, including data from both extant and experimentally evolved symbioses. We conclude that exploitation rather than mutualism may often explain the origin of mutualistic microbial symbioses

    Comparison of independent evolutionary origins reveals both convergence and divergence in the metabolic mechanisms of symbiosis

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9–11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature. Sørensen et al. compare multiple independent evolutionary origins of Paramecium-Chlorella symbiosis to reveal the underpinning metabolic mechanisms. Although the independent origins use a convergent nutrient exchange, they have diverged in traits linked to photosynthesis, which could mediate host-symbiont specificity in nature.Natural Environment Research CouncilBiotechnology and Biological Sciences Research Counci

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.

    Two-proton correlations from 158 AGeV Pb+Pb central collisions

    Get PDF
    The two-proton correlation function at midrapidity from Pb+Pb central collisions at 158 AGeV has been measured by the NA49 experiment. The results are compared to model predictions from static thermal Gaussian proton source distributions and transport models RQMD and VENUS. An effective proton source size is determined by minimizing CHI-square/ndf between the correlation functions of the data and those calculated for the Gaussian sources, yielding 3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added about the structure on the tail of the correlation function. The systematic error is revised. To appear in Phys. Lett.

    Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon

    Get PDF
    We present first data on event-by-event fluctuations in the average transverse momentum of charged particles produced in Pb+Pb collisions at the CERN SPS. This measurement provides previously unavailable information allowing sensitive tests of microscopic and thermodynamic collision models and to search for fluctuations expected to occur in the vicinity of the predicted QCD phase transition. We find that the observed variance of the event-by-event average transverse momentum is consistent with independent particle production modified by the known two-particle correlations due to quantum statistics and final state interactions and folded with the resolution of the NA49 apparatus. For two specific models of non-statistical fluctuations in transverse momentum limits are derived in terms of fluctuation amplitude. We show that a significant part of the parameter space for a model of isospin fluctuations predicted as a consequence of chiral symmetry restoration in a non-equilibrium scenario is excluded by our measurement.Comment: 6 pages, 2 figures, submitted to Phys. Lett.

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57
    corecore