8,089 research outputs found

    Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    Get PDF
    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes

    Setting military reenlistment bonuses

    Get PDF

    The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser multi-target combinatorial pulsed laser deposition

    No full text
    We report the effects of relative time delay of plasma plumes on thin garnet crystal films fabricated by dual-beam, combinatorial pulsed laser deposition. Relative plume delay was found to affect both the lattice constant and elemental composition of mixed Gd3Ga5O12 (GGG) and Gd3Sc2Ga5O12 (GSGG) films. Further analysis of the plasmas was undertaken using a Langmuir probe, which revealed that for relative plume delays shorter than ~200 µs, the second plume travels through a partial vacuum created by the first plume, leading to higher energy ion bombardment of the growing film. The resulting in-plane stresses are consistent with the transition to a higher value of lattice constant normal to the film plane that was observed around this delay value. At delays shorter than ~10 µs, plume propagation was found to overlap, leading to scattering of lighter ions from the plume and a change in stoichiometry of the resultant films

    Susceptibility Provision Enhances Effective De-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact

    Get PDF
    Abstract Objectives We evaluated the performance and time to result for pathogen identification (ID) and antimicrobial susceptibility testing (AST) of the Accelerate Pheno™ system (AXDX) compared with standard of care (SOC) methods. We also assessed the hypothetical improvement in antibiotic utilization if AXDX had been implemented. Methods Clinical samples from patients with monomicrobial Gram-negative bacteraemia were tested and compared between AXDX and the SOC methods of the VERIGENE® and Bruker MALDI Biotyper® systems for ID and the VITEK® 2 system for AST. Additionally, charts were reviewed to calculate theoretical times to antibiotic de-escalation, escalation and active and optimal therapy Results ID mean time was 21 h for MALDI-TOF MS, 4.4 h for VERIGENE® and 3.7 h for AXDX. AST mean time was 35 h for VITEK® 2 and 9.0 h for AXDX. For ID, positive percentage agreement was 95.9% and negative percentage agreement was 99.9%. For AST, essential agreement was 94.5% and categorical agreement was 93.5%. If AXDX results had been available to inform patient care, 25% of patients could have been put on active therapy sooner, while 78% of patients who had therapy optimized during hospitalization could have had therapy optimized sooner. Additionally, AXDX could have reduced time to de-escalation (16 versus 31 h) and escalation (19 versus 31 h) compared with SOC. Conclusions By providing fast and reliable ID and AST results, AXDX has the potential to improve antimicrobial utilization and enhance antimicrobial stewardship

    Evaluation of the major seed storage proteins, the conglutins, across genetically diverse narrow-leafed lupin varieties

    Get PDF
    Lupin seeds have an excellent nutritional profile, including a high proportion of protein and dietary fiber. These qualities make lupin seeds an ideal candidate to help meet the growing global demand for complementary sources of protein. Of consequence to this application, there are nutritional and antinutritional properties assigned to the major lupin seed storage proteins—referred to as α-, β-, δ- and γ-conglutins The variation in the abundance of these protein families can impact the nutritional and bioactive properties of different lupin varieties. Hence, exploring the conglutin protein profiles across a diverse range of lupin varieties will yield knowledge that can facilitate the selection of superior genotypes for food applications or lupin crop improvement. To support this knowledge generation, discovery proteomics was applied for the identification of the 16 known conglutin subfamilies from 46 domestic and wild narrow-leafed lupin (NLL) genotypes. Consequently, the diversity of abundance of these proteins was evaluated using liquid chromatography–multiple reaction monitoring-mass spectrometry (LC–MRM-MS). This comparative study revealed a larger variability for the β- and δ-conglutin content across the lines under study. The absence/lower abundance of the β2- to β6-conglutin subfamilies in a subset of the domesticated cultivars led to substantially lower overall levels of the allergenic β-conglutin content in these NLLs, for which the elevation of the other conglutin families were observed. The diversity of the conglutin profiles revealed through this study—and the identification of potential hypoallergenic genotypes—will have great significance for lupin allergic consumers, food manufactures as well as grain breeders through the future development of lupin varieties with higher levels of desirable bioactive proteins and lower allergen content

    Performance of TEM-PCR vs Culture for Bacterial Identification in Pediatric Musculoskeletal Infections

    Get PDF
    Improved diagnostics are needed for children with musculoskeletal infections (MSKIs). We assessed the performance of target-enriched multiplex polymerase chain reaction (TEM-PCR) in children with MSKI. TEM-PCR was concordant with culture in pathogen identification and antibiotic susceptibility testing, while increasing the overall yield of pathogen detection. This technology has the potential to inform judicious antimicrobial use early in the disease course

    Proteome phenotypes discriminate the growing location and malting traits in field-grown barley

    Get PDF
    Barley is one of the key cereal grains for malting and brewing industries. However, climate variability and unprecedented weather events can impact barley yield and end-product quality. The genetic background and environmental conditions are key factors in defining the barley proteome content and malting characteristics. Here, we measure the barley proteome and malting characteristics of three barley lines grown in Western Australia, differing in genetic background and growing location, by applying liquid chromatography-mass spectrometry (LC-MS). Using data-dependent acquisition LC-MS, 1571 proteins were detected with high confidence. Quantitative data acquired using sequential window acquisition of all theoretical (SWATH) MS on barley samples resulted in quantitation of 920 proteins. Multivariate analyses revealed that the barley lines\u27 genetics and their growing locations are strongly correlated between proteins and desired traits such as the malt yield. Linking meteorological data with proteomic measurements revealed how high-temperature stress in northern regions affects seed temperature tolerance during malting, resulting in a higher malt yield. Our results show the impact of environmental conditions on the barley proteome and malt characteristics; these findings have the potential to expedite breeding programs and malt quality prediction
    • …
    corecore