1,148 research outputs found

    Efficacy of Milorganite as a Repellent for Domestic Mice

    Get PDF

    A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding

    Get PDF
    In bacterial c-type cytochromes, the haem cofactor is covalently attached via two cysteine residues organized in a haem c-binding motif. Here, a novel octa-haem c protein, MccA, is described that contains only seven conventional haem c-binding motifs (CXXCH), in addition to several single cysteine residues and a conserved CH signature. Mass spectrometric analysis of purified MccA from Wolinella succinogenes suggests that two of the single cysteine residues are actually part of an unprecedented CX15CH sequence involved in haem c binding. Spectroscopic characterization of MccA identified an unusual high-potential haem c with a red-shifted absorption maximum, not unlike that of certain eukaryotic cytochromes c that exceptionally bind haem via only one thioether bridge. A haem lyase gene was found to be specifically required for the maturation of MccA in W. succinogenes. Equivalent haem lyase-encoding genes belonging to either the bacterial cytochrome c biogenesis system I or II are present in the vicinity of every known mccA gene suggesting a dedicated cytochrome c maturation pathway. The results necessitate reconsideration of computer-based prediction of putative haem c-binding motifs in bacterial proteomes

    Micro mechanics of critical states for isotropically overconsolidated sand

    Get PDF
    The discrete element method has been used to investigate the micro mechanics of shearing to a critical state on the loose and dense sides of critical. Isotropic compression has previously been modelled in 3D using a large number of particles and without the use of agglomerates. The same procedure is used here. Particle fracture is governed by the octahedral shear stress within the particle due to the multiple contacts and a Weibull distribution of strengths. Isotropic compression of a silica sand has been simulated to 20 MPa and followed by unloading to a range of stresses before shearing to a critical state, using micro parameters which relate to the silica sand particle strengths. The samples at the lowest stress levels exhibit peak strength and dilation. The sample at the highest stress exhibits contraction and ductile yielding to a critical state. A critical state line is established, which appears to become parallel to the isotropic line in log e-log p space at high stress levels. This paper shows that it is the evolving fractal particle size distribution during isotropic normal compression which governs the behaviour on unloading to different overconsolidation ratios. The micro mechanics of the critical state line are shown to be in the evolving particle size distribution during normal compression, and how such an aggregate behaves when it is unloaded

    Study of variable stars in the MOA data base: long-period red variables in the Large Magellanic Cloud

    Get PDF
    One hundred and forty six long-period red variable stars in the Large Magellanic Cloud (LMC) from the three year MOA project database were analysed. A careful periodic analysis was performed on these stars and a catalogue of their magnitudes, colours, periods and amplitudes is presented. We convert our blue and red magnitudes to KK band values using 19 oxygen-rich stars. A group of red short-period stars separated from the Mira sequence has been found on a (log P, K) diagram. They are located at the short period side of the Mira sequence consistent with the work of Wood and Sebo (1996). There are two interpretations for such stars; a difference in pulsation mode or a difference in chemical composition. We investigated the properties of these stars together with their colour, amplitude and periodicity. We conclude that they have small amplitudes and less regular variability. They are likely to be higher mode pulsators. A large scatter has been also found on the long period side of the (log P, K) diagram. This is possibly a systematic spread given that the blue band of our photometric system covers both standard B and V bands and affects carbon-rich stars.Comment: 19 pages, 19 figures, accepted for publication in MNRA

    Particle interactions with single or multiple 3D solar reconnecting current sheets

    Full text link
    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres

    Extragalactic neutrino background from very young pulsars surrounded by supernova envelopes

    Full text link
    We estimate the extragalactic muon neutrino background which is produced by hadrons injected by very young pulsars at an early phase after supernova explosion. It is assumed that hadrons are accelerated in the pulsar wind zone which is filled with thermal photons captured below the expanding supernova envelope. In collisions with those thermal photons hadrons produce pions which decay into muon neutrinos. At a later time, muon neutrinos are also produced by the hadrons in collisions with matter of the expanding envelope. We show that extragalactic neutrino background predicted by such a model should be detectable by the planned 1 km2^2 neutrino detector if a significant part of pulsars is born with periods shorter than 10\sim 10 ms. Since such population of pulsars is postulated by the recent models of production of extremely high energy cosmic rays, detection of neutrinos with predicted fluxes can be used as their observational test.Comment: 4 pages, 2 figures, A&A style, accepted to A&A Let

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR
    corecore