2,909 research outputs found

    Principal factors that determine the extension of detection range in molecular beacon aptamer/conjugated polyelectrolyte bioassays.

    Get PDF
    A strategy to extend the detection range of weakly-binding targets is reported that takes advantage of fluorescence resonance energy transfer (FRET)-based bioassays based on molecular beacon aptamers (MBAs) and cationic conjugated polyelectrolytes (CPEs). In comparison to other aptamer-target pairs, the aptamer-based adenosine triphosphate (ATP) detection assays are limited by the relatively weak binding between the two partners. In response, a series of MBAs were designed that have different stem stabilities while keeping the constant ATP-specific aptamer sequence in the loop part. The MBAs are labeled with a fluorophore and a quencher at both termini. In the absence of ATP, the hairpin MBAs can be opened by CPEs via a combination of electrostatic and hydrophobic interactions, showing a FRET-sensitized fluorophore signal. In the presence of ATP, the aptamer forms a G-quadruplex and the FRET signal decreases due to tighter contact between the fluorophore and quencher in the ATP/MBA/CPE triplex structure. The FRET-sensitized signal is inversely proportional to [ATP]. The extension of the detection range is determined by the competition between opening of the ATP/MBA G-quadruplex by CPEs and the composite influence by ATP/aptamer binding and the stem interactions. With increasing stem stability, the weak binding of ATP and its aptamer is successfully compensated to show the resistance to disruption by CPEs, resulting in a substantially broadened detection range (from millimolar up to nanomolar concentrations) and a remarkably improved limit of detection. From a general perspective, this strategy has the potential to be extended to other chemical- and biological-assays with low target binding affinity

    Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices

    Get PDF
    AbstractThis feature article presents a short review of the recent developments in the synthesis of conjugated polyelectrolytes (CPEs) along with their applications in organic optoelectronic devices with particular focus on the molecular structures of CPEs with ionic functionality, synthetic approaches, and their utilization as an interfacial layer. The orthogonal solubility of the CPEs allows the simple preparation of multilayer organic devices by solution casting on top of a nonpolar organic photoactive layer without disturbing the interfaces, showing their effectiveness in tuning the electronic structures at the interfaces for improving the charge carrier transport and resulting device properties. These achievements highlight the dynamic nature of CPEs and their applicability to a wide range of optoelectronic devices

    Green growth and green new deal policies in Korea

    Get PDF
    노트 : A Paper for the GURN/ITUC workshop on "A Green Economy that Works for Social Progress

    Rubisco activity and gene expression of tropical tree species under light stress

    Get PDF
    Tropical rain forests contain an ecologically and physiologically diverse range of vegetation and habitats. Sun-acclimated plants can be divided into two groups, shade-tolerant and shade-intolerant, according to the plant’s physiological and genetic responses. Some tropical species have potential capacity for light damage in a shaded environment as well as shade-tolerance to compensate for the impaired light harvesting complex. In particular, ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) is regulated by the Calvin cycle, which participated in protein synthesis. Rubisco plays a role in CO2 fixation, which helps supply the energy to regulate Rubisco for ribulose 1,5-bisphosphate (RuBP) reduction. Light intensity is associated with the photosynthetic rate and genetic response to moderate growth environments.Keywords: Gene expression, growth, light intensity, Rubisco activityAfrican Journal of Biotechnology Vol. 12(20), pp. 2764-276

    An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions

    Get PDF
    An improved 8-node shell finite element applicable for the geometrically linear and nonlinear analyses of plates and shells is presented. Based on previous first-order shear deformation theory, the finite element model is further improved by the combined use of assumed natural strains and different sets of collocation points for the interpolation of the different strain components. The influence of the shell element with various conditions such as locations, number of enhanced membranes, and shear interpolation is also identified. By using assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, to characterize the efficiency of these modifications of the 8-node shell finite elements, numerical studies are carried out for the geometrically linear and non-linear analysis of plates and shells. In comparison to some other shell elements, numerical examples for the methodology indicate that the modified element described locking-free behavior and better performance. More specifically, the numerical examples of annular plate presented herein show good validity, efficiency, and accuracy to the developed nonlinear shell element

    Structural dynamics and divergence of the polygalacturonase gene family in land plants

    Get PDF
    A distinct feature of eukaryotic genomes is the presence of gene families. The polygalacturonase (PG) (EC3.2.1.15) gene family is one of the largest gene families in plants. PG is a pectin-digesting enzyme with a glycoside hydrolase 28 domain. It is involved in numerous plant developmental processes. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Here, phylogenetic and gene structure analysis of PG genes in algae and land plants revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. PG genes in land plants contained 15 homologous intron blocks and 13 novel intron blocks. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. These findings demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intronic loss. Moreover, they underscore the importance of intron gain and loss in genomic adaptation to selective pressure

    Bocavirus Infection in Hospitalized Children, South Korea

    Get PDF
    This study presents the first evidence of human bocavirus infection in South Korean children. The virus was detected in 27 (8.0%) of 336 tested specimens, including 17 (7.5%) of 225 virus-negative specimens, collected from children with acute lower respiratory tract infection

    Remifentanil Prevents Tourniquet-Induced Arterial Pressure Increase in Elderly Orthopedic Patients under Sevoflurane/N2O General Anesthesia

    Get PDF
    Aims: Prolonged tourniquet inflation produces a hyperdynamic cardiovascular response. We investigated the effect of continuous remifentanil infusion on systemic arterial pressure, heart rate, and cardiac output changes during prolonged tourniquet use in elderly patients under sevoflurane/N2O general anesthesia
    corecore