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An improved 8-node shell finite element applicable for the geometrically linear and nonlinear analyses of plates and shells is
presented. Based on previous first-order shear deformation theory, the finite element model is further improved by the combined
use of assumed natural strains and different sets of collocation points for the interpolation of the different strain components. The
influence of the shell element with various conditions such as locations, number of enhanced membranes, and shear interpolation
is also identified. By using assumed natural strain method with proper interpolation functions, the present shell element generates
neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, to characterize
the efficiency of these modifications of the 8-node shell finite elements, numerical studies are carried out for the geometrically
linear and non-linear analysis of plates and shells. In comparison to some other shell elements, numerical examples for the
methodology indicate that the modified element described locking-free behavior and better performance. More specifically, the
numerical examples of annular plate presented herein show good validity, efficiency, and accuracy to the developed nonlinear shell
element.

1. Introduction

The 8-node isoparametric serendipity shell finite elements
were suffering from locking effects due to smaller thickness.
To avoid this deficiency, reduced and selective integration
techniques in the finite element method have been proposed;
however, spurious zero-energy kinematic modes occur and
may disturb the finite element response in a mesh.

Hinton and Huang [1] developed the 8-node element
model, but the element showed poor accuracy rather than the
9-node quadrilateral element. Lakshminarayana and Kailash
[2] presented an 8-node shell element with locking free. In
order to describe the locking problem, they used appropri-
ately chosen interpolation functions based on Hinton and
Huang’s concept.

Bathe andDvorkin [3] proposed an 8-node shell element-
MITC8 to avoid membrane and shear locking problem. The

strain tensor was expressed in terms of the covariant compo-
nents and contravariant base vectors.The performance of this
element was quite satisfying and suggested as the promising
results in very complex shell structures. Bucalem and Bathe
[4] had improved in previous publications the MITC8 shell
elements [3], and the results provided conservative and
unconservative performance in the finite element method.

Kim and Park [5] and Kim et al. [6] presented an
8-node shell finite element. In an 8-node shell element,
the persistence of locking problems was found to continue
through numerical experiments on the standard test problem
of MacNeal and Harder [7]. In recent year, Han et al. [8]
studied the new combination of sampling points for the
assumednatural strain and concluded thatwhile it performed
quite effectively in some cases, in a few analyses of very thin-
walled structures, the accuracy of the element showed less
than the predicted results.
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Han et al. [8] used the membrane strain sampling points
by Bathe et al. [9] and Han et al. [10]. The shear strain
sampling points by Hwang [11] are selected in Han et al. [8].

In present study, the interpolation functions by Polit et al.
[12] for the sampling points (Han et al., [8]) are used and the
strain component of center point is replaced by mean of the
components at two points (Bathe and Dvorkin, [3]).

The primary goal of this paper is to propose an improve-
ment of the most useful curved quadrilateral shell finite
element, which is clearly, from a practical point of view, the
8-node element and then in order to improve the 8-node
ANS shell element, a new combination of sampling points
and shaper functions are adopted for the analysis of plates
and shells. Also, in order of validation of the present shell
element models, the numerical examples are investigated and
compared with those solutions from the previous literatures.

2. Improvement of Shell Element

2.1. Kinematics of Shell. Figure 1 shows the geometry and
current kinematics of an 8-noded shell element with six
degrees of freedom.

Kinematic equations for the first-order shear deformation
theory including extension of the normal line can be obtained
from the 3D equations of the theory of elasticity by using
a well-known first-order approximation of a vector function
with respect to the coordinate 𝜉

3
(Rikards et al, [14]). Further

well-known geometric relations for the shell in normal
coordinates are also used.

Let us assume that vector P characterizes the position of
an arbitrary point of the shell in the initial reference state (see
point 𝐵 in Figure 2) and vector Q is the position of the same
point (point 𝐵󸀠) in the deformed state.The position of a point
at the mid-surface of the shell (point 𝐴) in the initial state
is characterized by vector P, and position of the same point
in the deformed state (point 𝐴󸀠) is characterized by vector
Q. Normal curvilinear coordinates 𝜉𝑖 = [𝜉𝛼, 𝜉

3
] at the mid-

surface of the shell in the initial state are defined by the right-
handed triad of the base vectors [a

𝛼
, a
3
]. Here, a unit vector a

3

is normal to themid-surface of shell.Therefore (see Figure 2),

P (𝜉𝑖) = P (𝜉𝛼) + 𝜉
3
a
3
. (1)

Similarly, curvilinear coordinates 𝜉
𝑖

= [𝜉
𝛼

, 𝜉
3
] in the

deformed state are defined by the triad of vectors [A
𝛼
,A
3
]. In

the deformed state, the vector A
3
may not be perpendicular

to the mid-surface of shell.
Vector function Q can be expanded in a Taylor’s series

with respect to coordinate 𝜉
3
normal to the mid-surface of

shell as follows:

Q (𝜉
𝑖
) = Q (𝜉

𝛼
) + 𝜉
3
∇ ⊗Q ⋅ a

3
+ L. (2)

Here, ∇ ⊗ Q = A
𝛼
⊗ a𝛼 = G is a second-order tensor (see

Luri’e, [18]), which characterizes the gradient of strains with
respect to coordinate 𝜉

3
, where ∇ is a Hamiltonian operator

and ⊗ is a dyadic product of the tensors.
Further, the notations for displacement at themid-surface

u and displacement of an arbitrary point of shell u are
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Figure 1: Geometry of 8-node shell element with six degrees of
freedom.
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Figure 2: Kinematics of the first-order shear deformation theory.

introduced. The following expressions can be written (see
Figure 2) as

Q = P + u, Q = P + u. (3)

From expressions (1)–(3), the representation of the displace-
ment u of an arbitrary point of the shell for the first-order
approximation can be obtained from

u (𝜉𝛼) = u (𝜉𝛼) + 𝜉
3
𝜑 (𝜉
𝛼
) , (4)

where 𝜑 is vector of rotation at the mid-surface of shell

𝜑 (𝜉
𝛼
) = A
3
(𝜉
𝛼
) − a
3
(𝜉
𝛼
) , (5)

where

A
3
= G ⋅ a

3
. (6)

The incremental form of the displacement field may be
written in terms of the nodal incremental vector Δu𝑎 as

Δu (𝜉𝛼) =
8

∑
𝑎=1

𝑁
𝑎
(𝜉
𝛼
) [I
3×3

𝜉
3

ℎ𝑎

2
H𝑎]Δu𝑎, (7)
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where Δ𝑢𝑎 = {Δ𝑢𝑎
1
, Δ𝑢𝑎
2
, Δ𝑢𝑎
3
, Δ𝜙𝑎
1
, Δ𝜙𝑎
2
, Δ𝜙𝑎
3
} and H𝑎 is the

rotational matrix of the normal vector at node 𝑎

H𝑎 = ℎ
𝑎T𝑎RΦ

𝑎TA, (8)

where T𝑎R is the transformation matrix between the initial
shell normal and the deformed normal can be written as the
result of a sequence of finite rotations𝜙

1
,𝜙
2
, and𝜙

3
as follows:

T𝑎R = [

[

cos𝜙
2
cos𝜙
3

− cos𝜙
2
sin𝜙
3

sin𝜙
2

cos𝜙
1
sin𝜙
3
+ sin𝜙

1
sin𝜙
2
cos𝜙
3
cos𝜙
1
cos𝜙
3
− sin𝜙

1
sin𝜙
2
sin𝜙
3
− sin𝜙

1
cos𝜙
2

sin𝜙
1
sin𝜙
3
− cos𝜙

1
sin𝜙
2
cos𝜙
3

sin 𝜃
1
cos𝜙
3
+ cos𝜙

1
sin𝜙
2
sin𝜙
3

cos𝜙
1
cos𝜙
2

]

]

,

Φ
𝑎
=
[
[
[
[

[

0 a𝑎
3

−a𝑎
2

−a𝑎
3

0 a𝑎
1

a𝑎
2

−a𝑎
1

0

]
]
]
]

]

, TA = [

[

cos𝜙
2
cos𝜙
3

sin𝜙
3
0

− cos𝜙
2
sin𝜙
3
cos𝜙
3
0

sin𝜙
2

0 1

]

]

.

(9)

The incremental membrane and bending and transverse
shear strains can be separated into linear and nonlinear parts
(see Han et al., [10]). The linear strain parts can be expressed
as:

Δ𝐸
𝑚
= BmΔu, Δ𝐸

𝑏
= 𝜉
3
BbΔu, Δ𝐸

𝑠
= BsΔu.

(10)

The shell theory outlined above is the so-called first-order
shear deformation theory with six degrees of freedom.

2.2. Strain Energy and Stiffness of Shell. The strain energy
𝑈 of the shell represented as a three-dimensional body is
given by the expression, where in curvilinear coordinates, the
contravariant stress tensor 𝑆𝑖𝑗 is contracted with the covariant
strain tensor 𝐸

𝑖𝑗

𝑈 =
1

2
∫
𝑉

𝑆
𝑖𝑗
𝐸
𝑖𝑗
𝑑𝑉, (11)

where 𝑑𝑉 is a volume element of the shell.
The Hooke’s law for each layer can be written as

𝑆
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙
𝐸
𝑘𝑙
. (12)

Here, 𝐶𝑖𝑗𝑘𝑙 is the component of the elasticity tensor in the
mid-surface metrics. Substituting (12) into (11) as the strain
energy 𝑈 can be expressed as

𝑈 =
1

2
∫
𝐴

∫
ℎ/2

−ℎ/2

𝐸
𝑇

𝑖𝑗
𝐶
𝑖𝑗𝑘𝑙
𝐸
𝑘𝑙
𝑑𝜉
3
𝑑𝐴. (13)

The plane stress condition is enforced. For single layer plates
and shells, these equations are quite straightforward. The
membrane forces, the bending moments, and the transverse
shear forces can be obtained by integrating the relevant
stresses through the thickness using the equivalent constitu-
tive equations:

{
R
𝑚𝑏

R
𝑠

} = [
D
𝑚𝑏

0
0 D

𝑠

]{
𝐸𝑚𝑏

𝐸𝑠
} , (14)

where R
𝑚𝑏

= {𝑁
𝜉
1 , 𝑁
𝜉
2 , 𝑁
𝜉
1
𝜉
2 ,𝑀
𝜉
1 ,𝑀
𝜉
2 ,𝑀
𝜉
1
𝜉
2}, and R

𝑠
=

{𝑄
𝜉
1 , 𝑄
𝜉
2}.

The membrane-bending D
𝑚𝑏

and shear strain rigidity D
𝑠

have 6 × 6 and 2 × 2matrices, respectively

D
𝑚𝑏

= ∫
ℎ/2

−ℎ/2

[
C1 𝜉

3
C1

𝜉
3
C1 𝜉2
3
C1
] 𝑑𝜉
3
, (15)

where C
1
is the elastic constitutive coefficient

D
𝑠
= 𝑘
𝑠
∫
ℎ/2

−ℎ/2

[
𝐺 0
0 𝐺

]𝑑𝜉
3
, (16)

where 𝑘
𝑠
is the shear correction factor (𝑘

𝑠
= 5/6) and 𝐺 is

the shear modulus. When the entire cross section is isotropic
elastic, then the rigiditymatrix reduces to the following form:

D
𝑒
=
[
[
[

[

ℎC
1

0 0

0
ℎ3

12
C
1

0

0 0 ℎC
2

]
]
]

]

, (17)

where C
1
and C

2
are the elastic constitutive coefficients of

membrane-bending and transverse shear parts.

2.3. Various Enhanced Strain Interpolation. Many researchers
addressed 8-node shell finite elements (Hinton and Huang
[1]; Lakshminarayana and Kailash [2]; MacNeal and Harder
[19]; Bucalem and Bathe [4]; Kim et al. [5, 6]; Han et al. [8]).
In this study, for the improved efficient 8 node shell element,
the usual 8-nodes of Lagrangian displacement interpolations
are employed, and the various combinations of assumed
natural strain interpolation functions are used. Figure 3 lists
various patterns of sampling points that can be employed
for membrane and in-plane shear and transverse shear strain
interpolations for the improved 8-node shell element. Based
on Figure 3, the 𝛼 pattern is used for membrane (𝛼𝛿𝛽 and
𝛼𝛿𝛾), and the𝛽 pattern is used formembrane (𝛽𝛿𝛾), as well as
transverse shear (𝛼𝛿𝛽). The 𝛿 pattern and 𝛾 pattern are used
for in-plane and transverse shear, respectively.

Han et al. [8] used the transverse shear interpolation
functions by Huang [11] in the 𝛾 patterns. The interpolation
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Figure 3: Sampling points of the 8-node ANS shell element.

functions by Polit et al. [12] are used in the 𝛾∗ and 𝛾∗
6
patterns.

In the 𝛾
6
and 𝛾∗
6
patterns, the strain component of center point

is replaced by the mean of the components at points 𝑆
1
and

𝑆
2
(Bathe and Dvorkin [3]).The six cases of the combinations

of various sampling points are used in the analysis.

3. Incremental Equation of Equilibrium

The generalized Hook’s law at large strain does not represent
an approximate material behavior description because stress-
strain relation is non-linear. From the practical point of
view, Hook’s law is only applicable to small strain, for which
constitutive tensor is constant coefficient.

The following incremental equilibrium equation is
obtained

∫𝛿(Δ
𝐿
𝐸)
𝑇

CΔ𝐿𝐸𝑑𝑉 + ∫ S𝛿 (Δ𝑁𝐿𝐸) 𝑑𝑉

=
𝑡+Δ𝑡

𝛿𝑊ext − ∫𝛿(Δ
𝐿
𝐸)
𝑇

S 𝑑𝑉,
(18)

where superscript 𝑡 which is generally used as the current
configuration is ignored in (18) and superscript 𝑡 + Δ𝑡 is the
adjust incremented configuration; 𝑡+Δ𝑡𝛿𝑊ext is the external
virtual work in 𝑡 + Δ𝑡.

The total tangent stiffness comprises thematerial stiffness
and the geometric stiffness.The linear part of theGreen strain
tensor is used to derive the material stiffness matrix, and the
non-linear part of the Green strain tensor is used to derive
the geometric stiffness matrix.

3.1. Linear Element Stiffness Matrix. If the strain displace-
ment (8) is substituted into (18), the linearized element
material stiffness matrix (KL) is obtained as follows:

∫𝛿(Δ
𝐿
𝐸)
𝑇

CΔ𝐿Δ𝐸𝑑𝑉 = 𝛿ΔUT
(∫BTCB 𝑑𝑉)ΔU

= 𝛿ΔUTKLΔU.
(19)
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Finally, the element stiffness matrix has 6 × 6 size on the
reference surface of shell element

[KL] = ∫[

[

K11
L K12

L

K21
L K22

L

]

]6×6

𝑑𝐴, (20)

where the submatrix of [KL] is shown in Han et al. [10].

3.2. Geometric StiffnessMatrix. In order to obtain an accurate
geometric stiffness matrix, the stresses should be evaluated
accurately. The accuracy of the computation of stresses for
formulation of geometric stiffness matrix is maintained by
obtaining the same interpolated strains in the computation
of linear stiffness matrix. The stresses are computed at the
integration points based on these strains. Substituting the
non-linear part of strain into (18), the following geometric
stiffness matrix ([KG]) is obtained:

∫𝑆
𝛼𝛽
𝛿 (Δ
𝑁𝐿
𝐸) 𝑑𝑉 = ∫𝛿(Δ

𝑁𝐿
𝐸)
𝑇

𝑆
𝛼𝛽
𝑑𝑉

= ∫𝛿ΔΩ
T
ΔQT

𝑆
𝛼𝛽
𝑑𝑉.

(21)

The geometric stiffness matrix in the natural coordinate
is analytically integrated through the thickness. By the trans-
formation of the natural to the global frame, the element
geometric stiffness matrix is obtained on the global frame
with 6 × 6 submatrix as follows:

[KG] = ∫[

[

K11
G K12

G

K21
G K22

G

]

]6×6

𝑑𝐴, (22)

where, the sub-matrix of [KG] is shown in Han et al. [10].
Then the final assembled incremental non-linear equilibrium
equation can be written as

([KL] + [KG]) ΔU =
𝑡+Δ𝑡F−F, (23)

where, F and F are the external and internal forces, respec-
tively.

The equilibrium equation must be satisfied throughout
the complete history of loading, and the non-linear process-
ing will be stopped only when the out of balance forces are
negligible within a certain convergence limit. If it is necessary
to extend the stability analysis beyond the limit point, that
is, in the so-called post-buckling range, appropriate solution
procedures must be applied. One approach is to use the
arc-length control method in conjunction with the Newton-
Raphson method to extend the stability analysis beyond the
limit point, by Crisfield [21].

3.3. Torsional Effect. The element stiffness matrix may be
written in a matrix form using the equivalent constitutive
equations. Finally, the element stiffnessmatrix has 6×6 size on
the reference surface of shell element. The torsional stiffness
term was formed as described by Kanok-Nukulchai [22] and
added to the stiffness term.

In this study, based on the procedure proposed by Kanok-
Nukulchai [22], the drilling degree of freedom will be tied to
the in-plane twist by a penalty functional through additional
artificial strain energy as

𝑈
𝑡
= 𝑘
𝑡
𝐺

× ∫
𝑉
𝑒

[ 𝛼
𝑡
(𝜉
1
, 𝜉
2
)

−
1

2
{
𝜕𝑤
2

𝜕𝑧
1

(𝜉
1
, 𝜉
2
, 0) −

𝜕𝑤
1

𝜕𝑧
2

(𝜉
1
, 𝜉
2
, 0)}]

2

𝑑𝑉,

(24)

where 𝑘
𝑡
is a parameter to be determined (the value of 0.1

suggested); 𝐺 is the shear modulus; 𝑉𝑒 is the volume of the
element; and 𝑑𝑉 is the volume element. After integration
throughout the thickness, (24) can be written as

𝑈
𝑡
= 𝑘
𝑡
𝐺ℎ

× ∫
𝑆
𝑒

[𝛼
𝑡
(𝜉
1
, 𝜉
2
)

−
1

2
{
𝜕𝑤
2

𝜕𝑧
1

(𝜉
1
, 𝜉
2
, 0) −

𝜕𝑤
1

𝜕𝑧
2

(𝜉
1
, 𝜉
2
, 0)}]

2

𝑑𝜉
1
𝑑𝜉
2
.

(25)

If 𝑘
𝑡
𝐺ℎ is chosen to be large relative to the factor 𝐸ℎ3

(which appears in the bending energy), (25) will play the role
of penalty function and result in the desired constraint:

𝛼
𝑡
(𝜉
1
, 𝜉
2
) ≈

1

2
{
𝜕𝑤
2

𝜕𝑧
1

(𝜉
1
, 𝜉
2
, 0) −

𝜕𝑤
1

𝜕𝑧
2

(𝜉
1
, 𝜉
2
, 0)} . (26)

At the Gauss points, A two-by-two Gauss integration scheme
is applied for the evaluation of the torsional stiffness in order
to avoid the overconstrained situation. To derive a torsional
stiffness from (25), the local variables are expressed in terms
of global nodal variables, u, by shape functions. This gives
(25) in the form (Kanok-Nukulchai [22])

𝑈
𝑡
= uTKtLu. (27)

The torsional stiffness term KtL is added as described by
Kanok-Nukulchai [22].

4. Numerical Results of the 8-Node
Shell Element

In this section, we describe numerical tests of improved 8-
node shell elements listed in Table 1. They are based on the
various combinations of assumed natural strain interpolation
functions. Several numerical examples are solved to conduct
the performance of the shell element in linear and non-linear
applications.The patch test, distortion test, and other various
numerical tests of the present shell elements are carried out
and validated using FEAP program (Zienkiewicz and Taylor
[23, 24]). All the results of the shell element showed very
good agreement with references. Several examples are given
to demonstrate the efficiency and accuracy of the present shell
element.
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Table 1: List of shell elements used for comparison.

Name Description (Patterns referred to Figure 2)

Present
(𝛼𝛿𝛽)

Sampling points for membrane (Pattern 𝛼),
in-plane shear (Pattern 𝛿), and transverse shear
(Pattern 𝛽)

Present
(𝛼𝛿𝛾)

Sampling points for membrane (Pattern 𝛼),
in-plane shear (Pattern 𝛿), and transverse shear
(Pattern 𝛾)

Present
(𝛽𝛿𝛾)

Sampling points for membrane (Pattern 𝛽),
in-plane shear (Pattern 𝛿), and transverse shear
(Pattern 𝛾)

Present
(𝛽𝛿𝛾∗)

Sampling points for membrane (Pattern 𝛽),
in-plane shear (Pattern 𝛿), and transverse shear
(Pattern 𝛾∗)

Present
(𝛽𝛿𝛾
6
)

Sampling points for membrane (Pattern 𝛽),
in-plane shear (Pattern 𝛿), and transverse shear
(Pattern 𝛾

6
)

Present
(𝛽𝛿𝛾∗
6
)

Sampling points for membrane (Pattern 𝛽),
in-plane shear (Pattern 𝛿), and transverse shear
(Pattern 𝛾∗

6
)

QUAD8 8-node shell element (MacNeal and Harder [7])

QUAD8∗ 8-node shell element (STRAND 7 [15])

QUAD8∗∗
8-node ANS shell element (Lakshminarayana and
Kailash [2])

XSHELL41
4-node quasiconforming shell element (Kim et al.
[16])

XSHELL-
8-ANS

8-node assumed natural strain shell element
(XFINAS [17])

MITC8 8-node shell element using a mixed interpolation
of tensorial components (Bathe and Dvorkin [3])

Figure 4:Mesh for patch test (Simo et al., [13]). Length of the square
𝐿 = 10; Young’s modulus 𝐸 = 1.0 × 107; Poisson’s ratio V = 0.3; and
thickness ℎ = 1.0.

4.1. Patch Test. In the study, the basic patch tests proposed by
Simo et al. [13] were performed, and the results illustrated in
Figure 4. A patch of five elements is used in this study. Also,
Boundary and loading conditions are illustrated in Figures
5 and 6, respectively. Tables 2, 3, and 4 present the normal-
ized solutions of nodal displacements on the right edges.

Table 2: Results of patch test under bending (reference solution:
𝜃
𝑦
= 𝑀𝐿/𝐸𝐼 = 0.12 × 10−4).

Combinations of
various sampling
points

𝛼𝛿𝛽 𝛼𝛿𝛾 𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾
6

𝛽𝛿𝛾∗
6

Normalized solutions 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Results of patch test under out-of-plane shear (reference
solution: 𝑤 = 6𝑆𝐿/5𝐺𝐴 = 0.312 × 10−5).

Combinations of
various sampling
points

𝛼𝛿𝛽 𝛼𝛿𝛾 𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾
6

𝛽𝛿𝛾∗
6

Normalized solutions 0.053 0.989 0.989 0.989 0.989 1.000

The normalized solutions are presented in the nondimen-
sional form using the following equation:

normalized solution =
present solution
reference solution

. (28)

Patch test results indicate that various sampling points for
assumed natural strain method in Tables 2 to 4 can represent
fields of constant moment, constant in-plane tension, and
transverse shear forces. In some cases, the present shell
element can pass the patch test when patterns 𝛼𝛿𝛾, 𝛽𝛿𝛾,
𝛽𝛿𝛾
6
, and 𝛽𝛿𝛾∗

6
are used in all cases. In other cases, the shell

element cannot pass the patch test when pattern 𝛼𝛿𝛽 is used
in pure transverse shear case. Therefore, we found that it is
very important to apply the best combination of sampling
points for 8-node shell elements.

4.2. Bending of Rectangular Plate. The simply supported
and clamped rectangular plate problem under uniform and
central point loadings is applied to test shear locking by
changing aspect ratios. Two aspect ratios of 𝑏/𝑎 = 1
and 5 were considered, and a quarter was modeled due
to symmetry. To test the general applicability, the plate is
analyzed using both a rectangularmesh and a distortedmesh.
Reference solutions (MacNeal and Harder [7]) are given in
Tables 5–10.

4.2.1. Rectangular Mesh

(a) For the Case of 𝑏/𝑎 = 1.0.
The reference vertical deflection at the center of the

simply supported plate (shown in Figure 7) under uniform
load is 4.062, and the clamped plate under concentrated load
is 5.60. In Tables 5 and 6, the numerical results obtained by
using different types of existing elements are listed as follows.

(1) Simply supported plate—uniform load.
(2) Clamped plate—concentrated load.

(b) For the Case of 𝑏/𝑎 = 5.0.
The reference deflection at the center of the simply

supported plate under uniform load is 12.97, and the clamped
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(b) Transverse shear test
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� = 0
x

(c) In-plane tension test

Figure 5: Boundary displacement conditions for patch tests.

Table 4: Results of patch test under in-plane tension (reference
solution: 𝑢 = 𝑇𝐿/𝐸𝐴 = 1.0 × 10−6).

Combinations of
various sampling
points

𝛼𝛿𝛽 𝛼𝛿𝛾 𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾
6

𝛽𝛿𝛾∗
6

Normalized solutions 1.000 0.965 0.992 0.992 0.992 0.992

Table 5: Results of rectangular plate (𝑏/𝑎 = 1.0; reference solution:
𝑢
3
= 4.062).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾

6
𝛽𝛿𝛾∗
6

QUAD8 QUAD8∗∗

4 × 4 1.009 1.000 1.000 1.000 1.016

plate under concentrated load is 7.23. In Tables 7 and 8,
the numerical results obtained by using different types of
elements are listed as follows.

(1) Simply supported plate—uniform load.
(2) Clamped plate—concentrated load.

Locking problems occurred when the 𝛽 pattern is applied to
transverse shear strain in thin plates (Han et al. [8]). This
particular example showed the limit of 8-node shell element

Table 6: Results of rectangular plate (𝑏/𝑎 = 1.0; reference solution:
𝑢
3
= 5.60).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾

6
𝛽𝛿𝛾∗
6

QUAD8 QUAD8∗∗

4 × 4 1.057 1.001 1.001 0.997 1.090

Table 7: Results of rectangular plate (𝑏/𝑎 = 5.0; reference solution:
𝑢
3
= 12.97).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾

6
𝛽𝛿𝛾∗
6

QUAD8 QUAD8∗∗

4 × 4 1.009 1.000 1.000 1.000 1.010

for the application of 𝛽 pattern in transverse shear strain. A
specifically designed application must be developed in order
to remove these errors in the 8-node shell element because
other patterns, 𝛾 and 𝛾

6
, still have the errors.Therefore, in this

study, the improved patterns are used and the case of 𝛽𝛿𝛾∗
6

shows more correct results.

4.2.2. Distorted Mesh (𝑏/𝑎 = 1.0). In order to test the general
applicability of the present formulation for bending, a thin
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(b) Transverse shear test
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Figure 6: Loading conditions for patch tests.

Sym

Sym

a

b

a = 2.0, b = 2.0, 10.0, E = 1.7472 × 107, � = 0.3, h = 0.0001,
concentrated load at center = 4.0 × 104, or uniform load = 1.0

Figure 7: Simply supported and clamped rectangular plate.

Table 8: Results of rectangular plate (𝑏/𝑎 = 5.0; reference solution:
𝑢
3
= 7.23).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾

6
𝛽𝛿𝛾∗
6

QUAD8 QUAD8∗∗

4 × 4 0.845 0.845 0.897 0.975 0.867
8 × 4 1.029 0.991 0.991 — —

square plate, 𝐿/ℎ = 20000, is analyzed using both a rectangu-
lar mesh and a distorted mesh. A clamped boundary condi-
tion is chosen because it is considered to bemore severe com-
pared with simple supports. Two types of loading are con-
sidered, concentrated load and distributed load. In Figure 8,

a/2

b/2

0.1 0.3 0.6

0.4 0.7 0.9
C

Sym

Sym

a = 2.0, b = 2.0, E = 1.7472 × 107, � = 0.3, h = 0.0001

Figure 8: Distorted mesh of simply supported and clamped rectan-
gular plate.

the problem geometry and material properties are provided.
A 4 × 4mesh is used on one-quarter of the plate. The results
are compared in Table 9 to those provided by Timoshenko
and Woinowosky-Krieger [25]. The accuracy of the results
obtained for both cases is maintained and compared with
Choi et al. [20] and Kim et al. [16].

The reference vertical deflection at the center of the plate
is the simply supported plate under uniform load which is
4.062 and the clamped plate under concentrated load which
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Table 9: Results of simply supported plate with rectangular and
distorted meshes (reference solutions: 𝑢

3
= 4.062 and 11.60).

Mesh types Element Uniform load
(𝑢
3
= 4.062)

Concentrated
load

(𝑢
3
= 11.60)

Rectangular mesh 𝛽𝛿𝛾 1.009 1.022
𝛽𝛿𝛾∗
6 1.000 0.999

Distorted mesh 𝛽𝛿𝛾 1.010 1.016
𝛽𝛿𝛾∗
6 1.000 0.999

Table 10: Results of clamped plate with rectangular and distorted
meshes (reference solutions: 𝑢

3
= 1.2637 and 5.60).

Mesh types Elements Uniform load
(𝑢
3
= 1.2637)

Concentrated
load

(𝑢
3
= 5.60)

Rectangular mesh

Choi et al∗ 0.965 0.990
XSHELL41 0.997 0.992

𝛽𝛿𝛾 1.052 1.057
𝛽𝛿𝛾∗
6 1.002 1.001

Distorted mesh

Choi et al.∗ 0.976 1.011
XSHELL41 1.023 0.995

𝛽𝛿𝛾 1.049 1.039
𝛽𝛿𝛾∗
6 0.999 0.998

∗Results of Choi et al. [20] andXSHELL41 are referenced fromKim et al. [16].

is 5.60. In Tables 9 and 10, the numerical results obtained by
using different types of existing elements are listed as follows.

(1) Simply supported plate—uniform and concentrated
load.

(2) Clamped plate—uniform and concentrated load.

The cases of 𝛽𝛿𝛾 and 𝛽𝛿𝛾∗
6
are compared for the test of

distorted mesh. It is also found that the locking phenomenon
does not happen and the solutions with rectangular mesh are
of similar accuracy.

4.3. Curved Beam Problem. The cantilever beam is clamped
at one end and loaded by a unit force at the other. The force
is applied either along the in-plane axis or along the out-of-
plane axis as seen in Figure 9. In the curved cantilever beam,
combination of the principal deformation modes is evoked
by a single in-plane or out-of-plane shear load at the free
end. Note also that the element shape is quite rectangular,
which will test the effect of slight irregularity. Theoretical
displacement of free end under in-plane load is proposed
0.08734 by MacNeal and Harder [7]. Recently, a different
solution of 0.08854 was given by Young. [26]. Reference
solutions (Young [26] andMacNeal andHarder [7]) are given
in Tables 11-12.

Results presented in Tables 11 and 12 show the outstanding
performance of the proposed element.

4.4. Twisted Beam Problem. The initial geometry of the beam
is twisted, but the initial strain is equal to zero. The twisted

Table 11: Results of curved beam (ℎ = 0.1) under in-plane shear
(reference solution: 𝑢

2
= 0.08854).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾∗

6
QUAD8∗ QUAD8∗∗

6 × 1 0.991 0.991 0.991 0.869 0.942

Table 12: Results of curved beam (ℎ = 0.1) under out-of-plane shear
(reference solution: 𝑢

3
= 0.5022).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾∗

6
QUAD8∗ QUAD8∗∗

6 × 1 0.970 0.972 0.972 0.958 0.962

Table 13: Results of twisted beam (ℎ = 0.32) under in-plane shear
(reference solution: 𝑢

2
= 5.424 × 10−3).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾∗

6
QUAD8 QUAD8∗∗

6 × 1 0.997 0.997 0.993 0.998
(12 × 2)

0.998
(12 × 2)

Table 14: Results of twisted beam (ℎ = 0.32) under out-of-plane
shear (reference solution: 𝑢

1
= 1.754 × 10−3).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾∗

6
QUAD8 QUAD8∗∗

6 × 1 1.001 1.004 0.997 0.998
(12 × 2)

0.998
(12 × 2)

beam problem (shown in Figure 10), which was introduced
byMacNeal and Harder [7], was proposed to test the effect of
element warping. The performance of elements of thickness
0.32 was investigated under in-plane and out-of-plane shear
loads. The warp of each element is 15∘. Numerical results in
Tables 13 and 14 are listed with displacements of free end
normalized to the reference solution (MacNeal and Harder
[7]).

Results are presented in Tables 13 and 14, showing more
correct results than the result of references in spite of the 6×1
mesh.

4.5. Pinched Hemispherical Shell with 18∘ Hole. The hemi-
spherical shell with an 18∘ hole is loaded by two pairs
of equal but opposite external forces; see Figure 11. The
shell undergoes an almost inextensional deformation, and a
membrane locking candestroy the solution. For the shownFE
mesh, the elements are flat and trapezoidal. Only a quarter of
the shell is modeled because of the double symmetry.

For this problem, the reference deflection at point A in
the 𝑥-direction is 0.093 (Simo et al. [13]). The geometry and
material properties are shown in Figure 11. The numerical
results are given in Table 15.

This indicates that the results obtained by our elements
are more accurate than the solution by the QUAD8∗∗ ele-
ment. Note that the error of 8 × 8 mesh for the QUAD8
element is greater than 10%.
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Table 15: Results of hemispherical shell with 18∘ hole (reference
solution: 𝑢

𝐴
= 0.093).

Element size Normalized solutions
𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾∗

6
QUAD8 QUAD8∗∗

4 × 4 0.542 0.543 0.516 0.832 0.387
6 × 6 0.915 0.915 0.902 1.003 0.773
8 × 8 0.984 0.984 0.978 C∗ 0.950
∗The grade C means that the QUAD8 gives accuracy 20% > error > 10%
(MacNeal and Harder [7]).

Table 16: Results of pinched cylinder with end diaphragm (refer-
ence solution: 𝑢

𝐴
= 1.8248 × 10−5).

Element size
Normalized solutions

𝛽𝛿𝛾 𝛽𝛿𝛾∗ 𝛽𝛿𝛾∗
6

XSHELL-
8-ANS MITC8

4 × 4 0.687 0.720 0.781 0.738 0.833
(3 × 3)

8 × 8 1.006 1.024 0.964 0.945 0.990

4.6. Pinched Cylinder with End Diaphragm. This problem,
shown in Figure 12, is yet another challenging test for the abil-
ity of the element in modeling inextensional bending modes
and complex membrane states. Most of the 4-node shell ele-
ments do not show good behavior in this test, but the present
8-node solid element and others passed this test. The vertical
deflection of point A was investigated. The reference value is
0.18248 × 10−4 (Belytschko et al. [27]). The results with dif-
ferent meshes and elements are presented in Table 16. A good
performance of the current elements was again observed.

The cases of 𝛽𝛿𝛾 and 𝛽𝛿𝛾∗ show that the results are
more conservative than the reference solution. However, the
solution in the case of 𝛽𝛿𝛾∗

6
is more accurate than that in the

reference element XSHELL-8-ANS.

4.7. Nonlinear Analysis of Slit Annular Plate. To validate the
present shell element for geometrically nonlinear analysis, a
numerical example of annular plate under end shear force
is solved. We examine an annular clamped plate subjected
to a distributed transverse shear force (see Figure 13). This
good benchmark problem was considered by Buechter and
Ramm [28], Brank et al. [29], and Sansour and Kollmann
[30], among others, and Sze et al. [31], presented ABAQUS
results for the problem. In particular, we use the ABAQUS
results presented in a recent paper of Sze et al. [31] for popular
benchmark problems of nonlinear shell analysis (because of
the tabulated data). In Figure 13, the geometry and elastic
material properties for the isotropic case are given.

The line force 𝐹 is applied at one end of the slit, while the
other end of the slit is fully clamped. In the present example,
the plate is modeled by polar coordinates. The problem,
however, can be solved by using the standard Cartesian
coordinates as well. A regular mesh of 5 × 40 elements is
considered in the present analysis. Solutions obtained by the
mesh of 2 × 16 are too stiff and suffer from locking. The arc-
length method is used to obtain the load-deflection curve in

F2

F3

90∘

Ri = 4.12, Re = 4.32, arc = 90∘ , E = 1 × 107, � = 0.25, h = 0.1

Figure 9: Curved Cantilever Beam.

these examples. The shear load versus displacement curves
for three characteristic directions are depicted in Figure 14.
Solutions obtained with the present formulation are in good
agreement with those obtained by Sze et al. [31]. Figure 15
shows the deformed configuration of the isotropic annular
plate for 𝐹 = 1.45.

4.8. Nonlinear Analysis of Hinged Shell. This is a widely used
example for testing geometrically nonlinear shell elements.
In this study, a quadrant of the shell is modeled with
12 × 12 mesh sizes, as shown in Figure 16. Three different
thickness values are considered; that is, ℎ = 3.175, 6.35, and
12.7mm, respectively. The problem has been considered in
Sabir and Lock [32], Horrigmoe and Bergan [33], Rhiu and
Lee [34], Sze et al. [31], and Arciniega and Reddy [35]. The
arc-length control method is used to trace the equilibrium
path, and a tolerance coefficient of 1.0 × 10−6 is used. The
total length is 𝐿 = 508mm, curvature of the circular
edges (1/𝑅) is 1/2,540mm, and the circumferential length is
508mm. The material properties are Young’s modulus 𝐸 =

3, 102.75N/mm2, and Poisson’s ratio V = 0.3.
For the case of ℎ = 12.7mm, the curve of the central

deflection versus load is given in Figure 17, showing the good
correlation between the present solution and the existing
solutions.

For the case of ℎ = 6.35mm, the solution derived with
24 × 24 four-node shell elements by Sze et al. [31] is used as
the major reference. The load-deflection curve is shown in
Figure 18. It is seen that the solution in this study is very close
to the solution of Sze et al. [31] in Figures 17 and 18.

In the third case of the present analysis, even a further
reduction of the panel thickness was presumed taking ℎ =
3.175mm. The load-deflection curve of very thin panel was
presented in Figure 19. One can remark that the decrease of
the thickness of the shell has reduced its stiffness; neverthe-
less, the range of rotations has not exceeded the limits of small
rotations.
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Figure 10: Twisted cantilever beam.
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Figure 11: Definition of loading points and initial configuration of hemispherical shell.

4.9. Nonlinear Analysis of Open-Ended Cylindrical Shell. The
large deformation analysis of a stretched cylinder, as shown
in Figure 20, is carried out with free ends. It is subjected to
a pair of concentrated forces. One octant of the cylinder is
analyzed with 16× 12mesh sizes. Material properties are 𝐸 =

10.5 × 106 and V = 0.3125. The cylinder length is 10.35, the
radius is 4.953, and the thickness is 0.094.

The radial displacements at points A, B, C, and D of
the shell are shown in Figure 21. It is noticed that the load-
deflection curves of the shell have two different regions:
the first is dominated by bending stiffness with large dis-
placements; the second, at load level of 𝑃 = 20, 000, is
characterized by a very stiff response of the shell. The present
converged solutions are compared with the results obtained
by Sze et al. [31], who used the commercial code ABAQUS.
The present results agree well with those obtained by Sze et al.
[31] for the three curves considered. The deformed shape of
the cylindrical shell, at load level of 𝑃 = 40, 000, is presented
in Figure 22.

4.10. Nonlinear Analysis of Pinched Cylindrical Shell. Here,
the cylindrical shell which is clamped at one end and
subjected to a pair of concentrated loads at the other free
end is studied. This example provides a severe test for finite
element formulations.This example was considered in Brank
et al. [29], Park et al. [36], Sansour and Kollmann [30], and
Arciniega and Reddy [35] among others.

The two forces act in opposite directions as shown in
Figure 23. Material properties are Young’s modulus, 𝐸 =
2.0685×107, Poisson ratio, V = 0.3.The cylinder length is 𝐿 =
304.8, and the radius 𝑅 = 101.6 with thickness ℎ = 3.0. One-
quarter of the structure is analyzedwith 20×20 elementmesh.
In Figure 24, the radial displacements at points A and B of the
shell are shown and compared with the reference solution of
Sze et al. [31]. Figure 24 shows that the load-deflection curve
goes beyond the highest physically possible deflection of the
loading point. The main purpose of the presented example
was to test the behavior of the numerical model, although the
authors are aware that the result of a real structure can differ
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Figure 12: Problem of pinched cylinder with end diaphragms.
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Figure 13: The slit annular plate loaded with various end forces 𝐹.

from the presented solution due to a possible contact between
two deformed regions of the shell in the postbuckling region.
The deformed shape of the semicylindrical shell subjected to
an end pinching load, at load level of 0.35𝑃, is presented in
Figure 25.

5. Concluding Remarks

In this study we have improved an 8-node ANS finite element
model for linear and non-linear analysis of plate and shell
structures. The accuracy and robustness of the improved
formulation and its implementation are illustrated via a
variety of shell geometries and deformations of shells.

The objective of this paper is to present some results
using the 8-node shell element when the sampling points
for the strain components are changed. The 8-node ANS
shell element using the sampling points earlier proposed
(Bathe and Dvorkin [3], Lakshminarayana and Kailash [2],
Bucalem and Bathe [4], Kim et al. [6], and Han et al., [8])
is considerably a powerful element and has shown good
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Figure 14: Load-deflection curves for the slit annular plate lifted by
line force 𝐹.
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Figure 15: The deformed shape of slip annular plate at 𝐹 = 1.45.

convergence behavior in many problem solutions. However,
the research paper of predicted strain components show that
the proper combination of sampling points is not predicted
with excellent accuracy or reveals persistence of locking
problems.

In order to improve the 8-node ANS shell element, a new
combination of sampling points is adopted for linear analysis
of isotropic and laminated composite structures. The present
assumed strain method completely removes both membrane
and shear locking behavior even when full integration is
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Figure 16: Hinged cylindrical shell; curved edges are free, and straight edges are hinged (𝑃 = 1,000).
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Figure 21: Load-deflection curves for the open-ended cylindrical
shell.
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Figure 22: The deformed shape of open-ended shell at 𝑃 = 40,000.

used in the formulation. A new combination of the sampling
points for the in-plane normal, in-plane shear, and transverse
shear strain components results in significantly better results.
Optimality in the convergence behavior is retained, and all
strain components are predicted with reasonable accuracy.
Other combinations of sampling points are also considered
but do not result into a further improvement in the pre-
dictive capability of the element. From several numerical
examples, the new combination 8-node ANS shell element
shows better performance compared with other combination
shell elements. The present combination of sampling points
(𝛽𝛿𝛾∗
6
) could be easily implemented into finite element code

and used for the practical purpose. In particular, numerical
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Figure 23: Problem definition and an initial configuration (𝑃 =

2,000).
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Figure 24: Load-deflection curves for the pinched cylindrical shell.

Figure 25:The deformed shape of pinched cylindrical shell at 0.35𝑃.
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examples for annular plate presented herein clearly show
the validity of the present approach and the accuracy of the
developed nonlinear shell element. Future workwill be useful
to extend this work to dynamic and buckling analysis of
isotropic and laminated composite shell structures.
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