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Tropical rain forests contain an ecologically and physiologically diverse range of vegetation and 
habitats. Sun-acclimated plants can be divided into two groups, shade-tolerant and shade-intolerant, 
according to the plant’s physiological and genetic responses. Some tropical species have potential 
capacity for light damage in a shaded environment as well as shade-tolerance to compensate for the 
impaired light harvesting complex. In particular, ribulose‐1,5‐bisphosphate carboxylase/oxygenase 
(Rubisco) is regulated by the Calvin cycle, which participated in protein synthesis. Rubisco plays a role 
in CO2 fixation, which helps supply the energy to regulate Rubisco for ribulose 1,5-bisphosphate (RuBP) 
reduction. Light intensity is associated with the photosynthetic rate and genetic response to moderate 
growth environments. 
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INTRODUCTION 
 
In many areas of tropical rain forests, the light associated 
with photosynthesis plays a key role in the physiological 
response (for example, photosynthetic rate, chlorophyll 
contents and Rubisco activity), growth and genetic 
response. Rubisco activity associated with photosyn-
thesis and the molecular responses. Plants have high 
photon-harvesting capacity for photosynthesis, which 
involves the absorption of light energy from the sun and a 
transformation to chemical energy. Plants are affected by 
light stress with a sensitive response to the environment 
(for example, light, temperature, humidity) and light 
phase in vegetation affect genetic diversity. Copping work 
causes particularly decrease of vegetation and genetic 
divergence. In addition, plants gain usually photoinhibition 
and photodamage in high light intensity (Anderson et al., 
2001; Chazdon et al., 1996; Deboeck et al., 2009; 
Jacquemyn et al., 2009). 

The genetic response is also closely associated with 
the different light intensities. For example, in the case of 
C3 plants, the nucleus receiving light energy from the sun  
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exhibits different gene expression in the chloroplasts of 
plants according to the different light intensities. This 
function is affected by environmental stress or eco-
physiological features in plants. Therefore, gene 
expression is closely associated with different light 
intensities. If light is excessive, the leaves begin to 
discolor and show damage due to oxidative stress. 
Proteomics analysis associated with gene expression of 
plants reveal a range of gene expression according to the 
light intensity. Thus, this study reviews the relationship 
between the physiological and Rubisco activity changes 
and gene expression under different light intensities.  
 
 
STATUS AND DISTRIBUTION OF TROPICAL RAIN 
FORESTS 
 
Tropical rain forests contain an ecologically and 
physiologically diverse range of vegetation and habitat. 
Wright (2005) examined the vegetation in Philippines. 
Hermann and Hugh (2010) studied the tropical species in 
the Rio de Janeiro region of Brazil. Humidity, soil 
moisture and photosynthetic efficiency were reported to 
vary according to elevation and seasonal changes. Great 
diversity of tropical  species exists  with  Leguminosae  
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Table 1. Shade tolerant plants in legumes family on light stress. 
 

Degree of shade tolerance Grass Legume 

High  

Axonopus compressus Calopohonium caeruleum 

Brachiaria milifomis Desmodium heterophyllum 

Ischaemum aristaum Desmdium ovalifolium 

Ottochla ndosa Flemengia congesta 

Paspalum conjugatum  

Stenotaphrum secundatum  

   

Medium 

Brachiaria brizantha Calopogonium mucunoides 

Brachiaria decumbens Centrosema pubescens 

Brachiaria humidicola Desmodium triflorum 

Digitaria setivalva Pueraria haseoloides 

Lmperata cylindrical Desmodium intortum 

Panicum maximum Leucaena leucocephala 

Pennisetum purpureum  

Setaria sphacelata  

   

Low 

Brachiaria mutica Stylosanthes hamata 

Cyndon plectostachyus Stylosanthes guianensis 

Digitaria decumhens Zornia diphylla 

Digitaria pentzii Macroptilium atropurpureum 

 
 
 
being the most dominant family and Rubiaceae and 
Piperaceae being important under shrubs. In a study of 
tropical rainforest trees, the physiological response, 
geographical distribution of tropical trees and growth is 
important for understanding the characteristics of tropical 
species.  
 
 
SHADE TOLERANCE ABOUT PHOTOSYNTHESIS 
RESPONSE IN TROPICAL SPECIES 
 
Depending on shade tolerance and shade intolerant 
species, photosynthetic response under different light 
intensities of tropical species was different according to 
plant growth, leaf anatomical characteristics, efficiency of 
light absorption, respiration rate, and photosynthetic 
efficiency. When sun leaves receive the amount of light, 
photosynthetic rate and leaf area ratio, and relative 
growth rate increase. Thickness of palisade cell layers 
and mesophyll tissue is also larger than shade leaves. As 
a result, light acclimation capacity and biomass in sun 
leaves increased. On the other hand, shade leaves 
showed delayed maturation of leaves and light 
acclimation (Ishii and Ohsugi, 2011). Table 1 show three 
tropical species groups according to shade-tolerance; 
strong, medium, and weak species. Shade intolerant 
species show limited biological productivity and nitrogen 
supply (Boardman, 1977; Thompson et al., 1992a, b; 
Jose et al., 2003; Chazdon et al., 1996; Kelvin, 2011; 
Monthomery et al., 2010). 

THE INFLUENCE OF CO2 CONCENTRATION ON 
PLANT GROWTH 
 
The carbon dioxide (CO2) concentration in the  
atmosphere has increased from approximately 200 to 
379 μL L

-1
 in 2005 (IPCC, 2007) and is expected to rise 

to between 730 and 1020 μL L
-1

 by the year 2010 (IPCC, 
2007). Plant growth was affected by variation of 
atmospheric CO2 concentration as well as photosynthetic 
rate (PN), stomatal conductance (Gs) (Polley et al., 1992; 
Anderson et al., 2001; Maheraliet al., 2003; Long et al., 
2004). Moreover, photosynthetic rate (PN) and stomatal 
conductance (Gs) decrease when plants have water 
insufficiency (Katul et al., 2010; Wang et al., 2010). For 
instance, light absorption into leaves induce rapidly 
stomatal opening in light environment, which urge plants 
to use light whereas light penetration through leaves in 
shade environment cause stomatal close (Katul et al., 
2010).  

In C3 carbon fixation (C3 plants) CO2 concentration 
increases when photosynthetic rate (PN) and stomatal 
conductance (Gs) increase. When light intensity increase 
in sun leaves, photosynthesis and light acquisition 
capacity increase. Light compensation point (LCP) and 
light saturation point (LSP) also increase in sun leaves. 
Light compensation point includes CO2 fixation and ATP 
generation for photosynthetic response. It means that sun 
leaves have potential light stress and shade tolerant 
capacity (Huang et al., 2011). Therefore, photosynthetic 
response plays a role in responses of the ecosystem to a  
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change in CO2 concentration. To elucidate this process, it 
is important to understand how ecosystems function, how 
plants adjust to environmental change (Bushand and 
Silman, 2004; Mayle et al., 2004; Beerling and Osborne, 
2006; Choi and Lee, 2012), and how photosynthetic rate 
functions in carbon cycle budgets (Mayle and Beerling, 
2004; Beerling and Mayle, 2006). Photosynthetic res-
ponse is important in ecosystem, because photosyn-
thesis is associated with global carbon budget, CO2 assi-
milation, and carbon distribution. Photosynthesis affects 
generally carbon gain and ecosystem productivity for ad-
justing light environment (Zheng et al., 2011). Carbon 
gain in ecosystem has especially been an important fac-
tor in photosynthetic response because photosynthesis is 
responsible for plantation and plant resistance (Long et 
al., 1989; Zheng et al., 2011). 
 

 

PHYSIOLOGICAL RESPONSES UNDER DIFFERENT 
LIGHT INTENSITY 
 

Model of C3 plant photosynthesis introduced by 
Farquahar et al. (1980) are accepted and used in many 
applications including CO2 assimilation, light regime, leaf-
age, and other physiological parameters. The amount of 
carbon absorbed into plants also decrease when the 
proportion of photosynthetic rate (PN) and respiration (Rd) 
decrease, As a result, plants get stressed such as 
drought stress (Wolkerstorfer et al., 2011).  

Under different light intensities, Chloroplast CO2 
concentration (Cc) show the maximum rate of carboxy-
lation of ribulose bisphosphate carboxylase (Vcmax) and 
the maximum rate of photosynthetic electron transport 
(Jmax). It was associated with the initial slope of the res-
ponse of the assimilation rate (A) to chloroplast CO2 con-
centration (Cc). Photosynthetic rate was determined by 
Rubisco kinetics. This is because the amount of Rubisco 
increased in leaves, carbon assimilation on photosynthe-
sis also increased (Yamori et al., 2006a, b). In addition, 
intercellular stomatal conductance into CO2 and tempera-
ture of leaves affect the photosynthesis response. When 
photosynthesis occurs, CO2 is diffused into the atmos-
phere and stomatal opening causes mesophyll cell to 
have resistance between chloroplast of leaf and atmos-
phere (Warren and Dreyer, 2006). Measurements of sto-
matal conductance at high temperatures are often 
confounded by high water vapor pressure deficits. When 
water vapor pressure is avoided, stomatal conductance 
can increase with temperature above the optimum tem-
perature for photosynthesis (Raschke, 1970; Hall et al., 
1976; Katul et al., 2010) and Cc may increase with 
temperature (Bunce, 1998; Zhou et al., 2011). 
 
 

Rubisco ACTIVITY UNDER DIFFERENT LIGHT 
INTENSITIES 
 

Rubisco activity included RuBP carboxylation and RuBP  

 
 
 
 
regeneration in photosynthetic response. Carbon assimi-
lation ability on leaf depends on increase of carboxylation 
on Rubisco enzyme. For instance, RuBP (Ribulose 
bisphosphate) regeneration need photosynthesis electron 
transport and photophosphorylation because of 
producing adenosine triphosphate (ATP) and 
nicotinamide adenine dinucleotide phosphate-oxidase 
(NADPH) under low light intensity (Seemann et al., 1988; 
Mi et al., 2012). Rubisco activation rate increase in dark 
reaction because of acquiring more carbon before photo-
synthesis in leaf occurs (Woodrow and Mott, 1989; Zou et 
al., 2011). Rubisco activation is achieved by carbon gain 
process in dark reaction. A capacity of RuBP regene-
ration limited CO2 assimilation to maintain higher CO2 
concentration in the Calvin cycle under light stress 
condition. In addition, RuBP regeneration played a role in 
making NADPH and ATP synthesis for yielding photosyn-
thetic response (Yamori et al., 2011). Rubisco kinetics 
differs from species to species because of different envi-
ronment (Galmés et al., 2005). 

In aspect of temperature on plant growth, when the 
temperature of plant growth lows, ribulose 1, 5-bispho-
sphate carboxylase/oxygenase was accumulated in 
leaves for photosynthetic response. And also, the amount 
of carbon on photosynthesis increased in the low tem-
perature (Yamori et al., 2006b). 

Rubisco activity shows the main factors controlling 
photosynthesis in terrestrial C3 plants, particularly under 
dark reactions and CO2 concentrations (Farquhar et al., 
1980; Farquhar and Sharkey, 1982; Woodrow and Berry, 
1988; Quick et al., 1991; Busch et al., 2012). Rubisco has 
double functions that Rubisco catalyze carboxylation of 
RuBP (ribulose 1, 5-bisphosphate) and Rubisco oxygen-
nates RuBP in photo-respiration (Busch et al., 2012). 
Consequently, Rubisco enzyme plays a role in assi-
milating into carbon oxide from oxygen in photo-environ-
ment (Busch et al., 2012). In addition, the Rubisco activity 
is controlled by RuBP and the CO2 concentration (carba-
mylation of Lys-201 on the large subunit and binding of a 
magnesium ion to the carbamate). Magnesium (Mg

2+
) 

helps Rubisco activation because change of carbamyla-
tion at Rubisco active site helps activation of stomatal 
conductance and CO2 supply in light environment 
(Farquhar et al., 1980; Huffaker, 1982; Cleland et al., 
1998; Galmés et al., 2011). Since the CO2 concentration 
in leaves is regulated by stomatal opening, the stomata 
actually control the availability of the substrate for 
Rubisco. Upon illumination, magnesium ions required for 
Rubisco activation are translocated from the thylakoid 
lumen to the chloroplast stroma.  

Chloroplast membrane plays an important role in light 
synthesis in photosynthesis (Ishida and Marjenah, 1999; 
Kamal et al., 2012). Most anions, such as sulphate, 
inorganic phosphate, several phosphorylated sugars, and 
NADPH, modulate the Rubisco activity by elevating the 
activation level and by competition with the RuBP 
substrate (Badger and Andrews, 1974; Igamberdieva and  



 
 
 
 
Rousselb, 2012). CO2 fixation shows a good type in the 
case of Rubisco activity. The role of the Calvin cycle is to 
fix CO2. In a complex system in the Calvin cycle, CO2 

plays a role in the direction of carbon. In the Calvin cycle, 
CO2 focuses on the amount of ribulose 1, 5-carboxylase/ 
oxygenase and 3-phosphoglycerate aldehyde. Ribulose-1, 
5-biphosphate (RuBP) catalyze RuBP carboxylase/oxy-
genase (Rubisco) which produce glycerate-3-phosphate 
(3-PGA) in Calvin cycle (Sánchez-Rodríguez et al., 2011). 
For example, the amount of RuBP and 3-phosphogly-
cerate aldehyde (3PGA) is decreased when a water 
deficit response occurs in plants (Von Caemmerer and 
Farquhar, 1981; Sánchez-Rodríguez et al., 2011).  

 
 
GENETIC RESPONSES UNDER DIFFERENT LIGHT 
INTENSITY 

 
In C3 plants, chloroplasts are responsible for producing 
carbonate and oxygen in the photosynthesis cycle as well 
as photorespiration in chloroplast for photoprotective 
mechanism (Robert et al., 1989; Ditmarová et al., 2009). 
In addition, plant cells synthesize starch in large granules, 
so the plant cells have the essential function according to 
the light mechanism (Ophir and Ben-Shaul, 1974; 
Appenroth et al., 2011). Chloroplasts involve the trans-
cription and translation of many genes. Gene expression 
is the RNA polymerase type that is associated with the 
photosynthesis proteins. On the other hand, plants have 
limited genetic, physiological and biochemical responses 
to environmental stress. Rubisco, glyceraldehyde 3-phos-
phate dehydronase and fructose 1, 6-bisphosphate en-
zyme show the gene expression in biosynthesis. These 
enzymes play a role in the nucleus and produce proteins. 
The genetic response contributes to the production of 
valuable timber. 

In the molecular biological response, reverse trans-
formation polymerase chain reaction (RT-PCR) is a useful 
technique for examining gene expression encoded at the 
mRNA level. In particular, RT-PCR can clarify the various 
proteins about gene expression. In C3 plants, light is 
closely associated with gene expression. The role of light 
in carbon fixation in C3 plants involves an interaction of 
light with the palisade mesophyll and spongy mesophyll 
within the cell (Gutschik, 1984; Terashima, 1989; 
Fukshansky and Remisowsky, 1992; Evans, 1988; 
Tosens et al., 2012; Zell et al., 2010). Mesophyll diffusion 
conductance influences photosynthetic response be-
cause the mesophyll diffusion conductance is related to 
leaf age and light intensity (Tosens et al., 2012). In addi-
tion, C3 plants depend on the photoautotroph with light 
energy. Specifically, light helps enable the plant to control 
the photoperiod, seasonal environment and the regene-
ration of plant species in terms of the genetic response. 
The light signals are mediated by highly specialized 
information-transducing photoreceptors. For example, 
Arabidopsis thaliana has genome sequences for  a pro- 
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teomic response.  

Proteomics has been studied at different light 
intensities. In Legumes, Medicago truncatula was studied 
on proteomic proteins. Two-dimensional (2D) gel- elec-
trophoresis can identify proteins according to their mass 
(Paul and Philip, 2004). For both sun-grown and shade-
grown plants, 2D gel-electrophoresis was used to 
quantify the proteins. The accumulation of proteins re-
vealed the technical methods and difference at the 
molecular levels between the sun and shade environment. 
The results suggest that tropical species can respond to 
the environment or light stress through a genetic res-
ponse. In addition, 2D gel proteomic analysis can be 
used to obtain the score and queries-matched (%) 
association with the function of the proteomic response.  
 
 

PROSPECT 
 

Based on physiological and genetic response, 
photosynthesis, Rubisco activity, and genetic response of 
tropical plants under different light intensities, has already 
been progressed in C3 plants. Some experiment in plant 
light intensity has been achieved by some plants (Chaves 
et al., 2009). To understand photosynthetic and genetic 
response under different light intensity, we have to study 
gene expression and physiological characteristics, inclu-
ding Rubisco activity of Calvin cycle on light stress in 
plants. There are a number of photosynthetic responses 
under different light intensity related to genetic response. 
Through complex response to light intensity, we have to 
specifically find physiological metabolism of plants on 
photosynthesis. On the light response, we also study 
resistant capacity of plants under different light intensity. It 
suggests that studying light response would be 
interesting to find plant’s potential stress on the light.  
 
 

CONCLUSION 
 

In the shading environment, some tropical species had 
shade-tolerance because of the potential light harvest 
capacity and photoprotective activity in the thylakoid 
membrane. The decrease in photosynthesis capacity, 
Rubisco activity and growth in shading environment 
means that capacity of carbon storage and CO2 supply 
regarding the Calvin cycle was not active. This indicates 
that the Rubisco activity is influenced by the Calvin cycle. 
In the Calvin cycle, Rubisco helps fix CO2 as the dark 
response to transfer light energy. Therefore, ATP and 
NADPH help supply the energy. On the other hand, in a 
shading environment, there is less carbonate accumula-
tion due to light stress and shade intolerance. 
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