49 research outputs found

    Effect of nanosilica-based activators on the performance of an alkali-activated fly ash

    Full text link
    This paper assesses the effect of the use of an alternative activator based on nanosilica/MOH (M = K+ or Na+) blended solutions on the performance of alkali-activated fly ash binders. Binders produced with commercial silicate activators display a greater degree of reaction, associated with increased contents of geopolymer gel; however, mortars produced with the alternative nanosilica-based activators exhibited lower water demand and reduced permeability, independent of the alkali cation used. Na-based activators promote higher compressive strength compared with K-based activators, along with a refined pore structure, although K-activated samples exhibit reduced water demand. Zeolite type products are the major crystalline phases formed within these binders. A wider range of zeolites is formed when using commercial silicate solutions compared with the alternative activators. These results suggest that there are variations in the availability of Si in the system, and consequently in the alkalinity, depending on the silicate source in the activator, which is important in determining the nanostructure of the geopolymer gel.This study was sponsored by the Ministerio de Ciencia e Innovacion of Spain (Project GEORES MAT2010-19934 and research scholarship BES-2008-002440), European regional development fund (FEDER), and the Universitat Politecnica de Valencia (Spain). The participation of SAB and JLP was funded by the Australian Research Council (ARC), including partial funding through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC. A special acknowledgement is also due to the Centre of Electron Microscopy of the Universitat Politecnica de Valencia and Pedro Garces from the Universidad de Alicante for support in some experiments.Rodriguez Martinez, ED.; Bernal, SA.; Provis, JL.; Paya Bernabeu, JJ.; MonzÃģ Balbuena, JM.; Borrachero Rosado, MV. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash. Cement and Concrete Composites. 35(1):1-11. doi:10.1016/j.cemconcomp.2012.08.025S11135

    āļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ”āđāļĢāļ‡āļ•āļķāļ‡āļœāļīāļ§āļ•āđˆāļ­āļāļģāļĨāļąāļ‡āļ­āļąāļ”āđāļĨāļ°āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļœāļŠāļĄāļ™āđ‰āļģāļĒāļēāļ‡āļžāļēāļĢāļēReducing Unplanned Downtime Losses in the Shaft Assembly Process with Overall Effectiveness Measurement

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ”āđāļĢāļ‡āļ•āļķāļ‡āļœāļīāļ§āļ•āđˆāļ­āļāļģāļĨāļąāļ‡āđāļĨāļ°āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļœāļŠāļĄāļ™āđ‰āļģāļĒāļēāļ‡āļžāļēāļĢāļē āđ‚āļ”āļĒāđ€āļĨāļ·āļ­āļāļ­āļ­āļāđāļšāļšāļŠāđˆāļ§āļ™āļœāļŠāļĄāļ„āļ­āļ™āļāļĢāļĩāļ•āļ„āļ§āļšāļ„āļļāļĄāļāļģāļĨāļąāļ‡āļ­āļąāļ” 240 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ•āđˆāļ­āļ•āļēāļĢāļēāļ‡āđ€āļ‹āļ™āļ•āļīāđ€āļĄāļ•āļĢ āđāļĨāļ°āļ„āđˆāļēāļāļēāļĢāļĒāļļāļšāļ•āļąāļ§āļĢāļ°āļŦāļ§āđˆāļēāļ‡ 7.5 – 12.5 āđ€āļ‹āļ™āļ•āļīāđ€āļĄāļ•āļĢ āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ—āļ”āļŠāļ­āļšāđāļšāđˆāļ‡āļ­āļ­āļāđ€āļ›āđ‡āļ™ 2 āļŠāļļāļ” āđ‚āļ”āļĒāļŠāļļāļ”āđāļĢāļ āļ™āđ‰āļģāđƒāļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄāļ„āļ­āļ™āļāļĢāļĩāļ•āļ„āļ§āļšāļ„āļļāļĄāļšāļēāļ‡āļŠāđˆāļ§āļ™āļ–āļđāļāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļ™āđ‰āļģāļĒāļēāļ‡āļžāļēāļĢāļēāđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 0.5, 1.0, 1.5 āđāļĨāļ° 2.0 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āļ™āđ‰āļģ āļŠāđˆāļ§āļ™āļŠāļļāļ”āļ—āļĩāđˆāļŠāļ­āļ‡ āļ™āļģāļŠāđˆāļ§āļ™āļœāļŠāļĄāļ‚āļ­āļ‡āļŠāļļāļ”āđāļĢāļāļĄāļēāđāļ—āļ™āļ—āļĩāđˆāļ™āđ‰āļģāļĒāļēāļ‡āļžāļēāļĢāļēāļšāļēāļ‡āļŠāđˆāļ§āļ™āļ”āđ‰āļ§āļĒāļŠāļēāļĢāļĨāļ”āđāļĢāļ‡āļ•āļķāļ‡āļœāļīāļ§āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 5 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āļ™āđ‰āļģāļĒāļēāļ‡āļžāļēāļĢāļē āļŦāļēāļ„āđˆāļēāļāļēāļĢāļĒāļļāļšāļ•āļąāļ§āļ‚āļ“āļ°āļŠāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļļāļāļŠāđˆāļ§āļ™āļœāļŠāļĄ āđāļĨāļ°āļ—āļ”āļŠāļ­āļšāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ—āļĩāđˆāļ­āļēāļĒāļļ 7, 14 āđāļĨāļ° 28 āļ§āļąāļ™ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āđāļ•āđˆāļĨāļ°āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļģāļ™āļ§āļ“āļˆāļēāļāļ™āđ‰āļģāļŦāļ™āļąāļāđāļĨāļ°āļ›āļĢāļīāļĄāļēāļ•āļĢāļĢāļēāļĒāļāđ‰āļ­āļ™ āļˆāļēāļāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļžāļšāļ§āđˆāļē āļāļēāļĢāđ€āļ•āļīāļĄāļŠāļēāļĢāļĨāļ”āđāļĢāļ‡āļ•āļķāļ‡āļœāļīāļ§āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļ„āļ­āļ™āļāļĢāļĩāļ•āļŠāļ”āļĄāļĩāļ„āđˆāļēāļĒāļļāļšāļ•āļąāļ§āļŠāļđāļ‡āļ‚āļķāđ‰āļ™ āđāļĨāļ°āļžāļšāļ§āđˆāļēāļāļēāļĢāđ€āļ•āļīāļĄāļŠāļēāļĢāļĨāļ”āđāļĢāļ‡āļ•āļķāļ‡āļœāļīāļ§āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļ„āļ­āļ™āļāļĢāļĩāļ•āļœāļŠāļĄāļ™āđ‰āļģāļĒāļēāļ‡āļžāļēāļĢāļēāļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļĨāļ”āļĨāļ‡āļ­āļĒāđˆāļēāļ‡āļĄāļēāļāđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āđƒāļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄāļ—āļĩāđˆāļĄāļĩāļ™āđ‰āļģāļĒāļēāļ‡āļ‚āđ‰āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 1.5 āđāļĨāļ° 2.0 āļ‹āļķāđˆāļ‡āļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļĨāļ”āļĨāļ‡āļŠāļđāļ‡āļ–āļķāļ‡āļĢāđ‰āļ­āļĒāļĨāļ° 32 āđāļĨāļ° 57 āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđ€āļ—āļĩāļĒāļšāļāļąāļšāļ„āļ­āļ™āļāļĢāļĩāļ•āļ›āļāļ•āļī āđāļĨāļ°āļžāļšāļ§āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļœāļŠāļĄāļ™āđ‰āļģāļĒāļēāļ‡āļžāļēāļĢāļēāļ—āļąāđ‰āļ‡āļ—āļĩāđˆāļĄāļĩāđāļĨāļ°āđ„āļĄāđˆāļĄāļĩāļŠāļēāļĢāļĨāļ”āđāļĢāļ‡āļ•āļķāļ‡āļœāļīāļ§āđāļ›āļĢāļœāļąāļ™āđ‚āļ”āļĒāļ•āļĢāļ‡āļāļąāļšāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļThis objective of this research is to study the effects of surfactant on compressive strength and density of para rubber latex concrete. Control concrete having compressive strength of 240 ksc and slump between 7.5 and 12.5 cm was chosen for the mix proportion design methods. Testing specimens was separated into 2 groups. The first group, a partial amount of water in control mixture was replaced by para rubber latex at rates of 0.5, 1.0, 1.5 and 2.0 percent by weight of water. The second group, 5 percent by weight of para rubber latex was replaced by surfactant for every mixture of the first group. For every mixture, slump of fresh concretes was observed. Compressive strength of each mixture was investigated at the ages of 7, 14, and 28 days, respectively. Density of each specimen was calculated using its weight and volume, one-by-one. It was found that surfactant could increase slump of fresh concrete. In addition, the surfactant resulted in a dramatic decline in the compressive strength of para rubber latex concrete, especially for the mixtures containing 1.5 and 2.0 percent of para rubber latex. Those mixtures showed decreases of 32 and 52 percent in comparison with the control concrete. Irrespective of surfactant, the density of para rubber latex concrete exhibits significant relationship with compressive strength of the specimens
    corecore