4,945 research outputs found

    Reduction of manifolds with semi-negative holomorphic sectional curvature

    Full text link
    In this note, we continue the investigation of a projective K\"ahler manifold MM of semi-negative holomorphic sectional curvature HH. We introduce a new differential geometric numerical rank invariant which measures the number of linearly independent {\it truly flat} directions of HH in the tangent spaces. We prove that this invariant is bounded above by the nef dimension and bounded below by the numerical Kodaira dimension of MM. We also prove a splitting theorem for MM in terms of the nef dimension and, under some additional hypotheses, in terms of the new rank invariant

    Biomechanical Comparison of Wire Circlage and Rigid Plate Fixation for Median Sternotomy Closure in Human Cadaver Specimens

    Get PDF
    Background: Over 700,000 patients per year undergo open-heart surgery. Healing complication rates can be up to 5% of patients who undergo this procedure, with a morbidity rate of 50% if mediastinitis supervenes. A secure and rigid fixation of surgically divided sternum is critical to avoid healing complications. The purpose of this study was to compare the yield load, construct stiffness, ultimate load, displacement at ultimate load, and post-yield behavior of three sternotomy closure methods (Peristernal wires or Sternalock titanium plates) when stressed in each of three directions: lateral distraction, rostro-caudal (longitudinal) shear distraction, and anterior-posterior (transverse) shear in a cadaveric model. Methods: Forty-two fresh cadaver models were divided into three test groups: group A, B, and C. A cardiothoracic surgeon divided each cadaveric sternum longitudinally and repaired peristernal wires or one of two Sternalock configurations. Tests were performed using a materials testing system that applied force at a constant displacement rate in a uniaxial direction until the construct catastrophically failed. Mechanical behavior was monitored using a 3D texture correlation system to create a real-time three-dimensional representation of strain directions. The resulting displacement pattern is analogous to a finite element contour plot of displacements, Lagrange Strain, or velocity. Statistical analysis was used to show the different mechanical properties of each closure method. Results: When loaded in lateral distraction, both Sternalock configurations surpassed the rigidity of peristernal wires by 600%. Some evidence was also found linking Sternalock with stiffer behavior in the rostro-caudal direction. Though not statistically significant, a trend was observed showing that constructs using the Sternalock also had higher yield loads, as well as, less post-yield displacement when compared to peristernal wires. Conclusions: Data gathered showed the superior performance of the Sternalock system in stiffness in both longitudinal distraction and rostro-caudal shear. Implications for use of the Sternalock system are faster healing times, lower complication rates, and success of the procedure

    A New Look at Trigger Point Injections

    Get PDF
    Trigger point injections are commonly practised pain interventional techniques. However, there is still lack of objective diagnostic criteria for trigger points. The mechanisms of action of trigger point injection remain obscure and its efficacy remains heterogeneous. The advent of ultrasound technology in the noninvasive real-time imaging of soft tissues sheds new light on visualization of trigger points, explaining the effect of trigger point injection by blockade of peripheral nerves, and minimizing the complications of blind injection

    Study of the Discrete Shear Gap Technique in Timoshenko Beam Elements

    Get PDF
    A major difficulty in formulating a finite element for shear-deformable beams, plates, and shells is the shear locking phenomenon. A recently proposed general technique to overcome this difficulty is the discrete shear gap (DSG) technique. In this study, the DSG technique was applied to the linear, quadratic, and cubic Timoshenko beam elements. With this technique, the displacement-based shear strain field was replaced with a substitute shear strain field obtained from the derivative of the interpolated shear gap. A series of numerical tests were conducted to assess the elements performance. The results showed that the DSG technique works perfectly to eliminate the shear locking. The resulting deflection, rotation, bending moment, and shear force distributions were very accurate and converged optimally to the corresponding analytical solutions. Thus the beam elements with the DSG technique are better alternatives than those with the classical selective-reduced integration

    Meaning and Impact of Interprofessional Simulation Participation for Occupational Therapy Students: A Qualitative Descriptive Study

    Get PDF
    Occupational therapy programs are incorporating simulation experiences more regularly into their curricula. However, there continues to be a need for more evidence demonstrating simulation benefits, particularly when various client populations, standardized actors, interpersonal skill practice, and multiple disciplines are incorporated into scenarios. The purpose of this qualitative descriptive study was to describe the meaning and impact of participating in an interprofessional simulation for occupational therapy students as part of their current academic preparation and future clinical practice in the hopes of increasing the participants’ interpersonal and clinical reasoning skills. Study participants were entry-level occupational therapy doctoral students (N=64) and their written reflections represented the collected data. The interprofessional simulation involved standardized actors and challenged students’ interpersonal skills as they responded to an unexpected and emotionally charged situation. Data were analyzed line by line and incident-to-incident, and ultimately organized into a categorical structure. There were four major categories: Simulation experience, Student meaning, Future clinical impact, and Multifactorial impact. Study results suggest: 1) occupational therapy students appreciate and benefit from simulation experiences; 2) standardized actors decrease familiarity for students and adds realism; and 3) interprofessional education opportunities contribute to students’ understanding of their own role and the roles of other disciplines. When designing simulation experiences, faculty should consider incorporating unexpected circumstances to challenge the student’s interpersonal skills, using a combination of high fidelity simulations with standardized actors, and including as many disciplines as possible to fully reflect the diversity and extensive skills of the interdisciplinary team

    Efficient Convex PCA with applications to Wasserstein geodesic PCA and ranked data

    Full text link
    Convex PCA, which was introduced by Bigot et al., is a dimension reduction methodology for data with values in a convex subset of a Hilbert space. This setting arises naturally in many applications, including distributional data in the Wasserstein space of an interval, and ranked compositional data under the Aitchison geometry. Our contribution in this paper is threefold. First, we present several new theoretical results including consistency as well as continuity and differentiability of the objective function in the finite dimensional case. Second, we develop a numerical implementation of finite dimensional convex PCA when the convex set is polyhedral, and show that this provides a natural approximation of Wasserstein geodesic PCA. Third, we illustrate our results with two financial applications, namely distributions of stock returns ranked by size and the capital distribution curve, both of which are of independent interest in stochastic portfolio theory.Comment: 40 pages, 9 figure

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed
    corecore