253 research outputs found

    Approximate Optimal Atmospheric Entry Trajectories

    Get PDF
    Approximate optimal atmospheric entry trajectories maximizing terminal function of velocity, heading angle, flight path angle, and altitud

    Detection of a z=0.0515, 0.0522 absorption system in the QSO S4 0248+430 due to an intervening galaxy

    Get PDF
    In some of the few cases where the line of sight to a Quasi-Stellar Object (QSO) passes near a galaxy, the galaxy redshift is almost identical to an absorption redshift in the spectrum of the QSO. Although these relatively low redshift QSO-galaxy pairs may not be typical of the majority of the narrow heavy-element QSO absorption systems, they provide a direct measure of column densities in the outer parts of galaxies and some limits on the relative abundances of the gas. Observations are presented here of the QSO S4 0248+430 and a nearby anonymous galaxy (Kuhr 1977). The 14 second separation of the line of sight to the QSO (z sub e = 1.316) and the z=0.052 spiral galaxy, (a projected separation of 20 kpc ((h sub o = 50, q sub o = 0)), makes this a particularly suitable pair for probing the extent and content of gas in the galaxy. Low resolution (6A full width half maximum), long slit charge coupled device (CCD) spectra show strong CA II H and K lines in absorption at the redshift of the galaxy (Junkkarinen 1987). Higher resolution spectra showing both Ca II H and K and Na I D1 and D2 in absorption and direct images are reported here

    NNSA ASC Exascale Environment Planning, Applications Working Group, Report February 2011

    Get PDF
    The scope of the Apps WG covers three areas of interest: Physics and Engineering Models (PEM), multi-physics Integrated Codes (IC), and Verification and Validation (V&V). Each places different demands on the exascale environment. The exascale challenge will be to provide environments that optimize all three. PEM serve as a test bed for both model development and 'best practices' for IC code development, as well as their use as standalone codes to improve scientific understanding. Rapidly achieving reasonable performance for a small team is the key to maintaining PEM innovation. Thus, the environment must provide the ability to develop portable code at a higher level of abstraction, which can then be tuned, as needed. PEM concentrate their computational footprint in one or a few kernels that must perform efficiently. Their comparative simplicity permits extreme optimization, so the environment must provide the ability to exercise significant control over the lower software and hardware levels. IC serve as the underlying software tools employed for most ASC problems of interest. Often coupling dozens of physics models into very large, very complex applications, ICs are usually the product of hundreds of staff-years of development, with lifetimes measured in decades. Thus, emphasis is placed on portability, maintainability and overall performance, with optimization done on the whole rather than on individual parts. The exascale environment must provide a high-level standardized programming model with effective tools and mechanisms for fault detection and remediation. Finally, V&V addresses the infrastructure and methods to facilitate the assessment of code and model suitability for applications, and uncertainty quantification (UQ) methods for assessment and quantification of margins of uncertainty (QMU). V&V employs both PEM and IC, with somewhat differing goals, i.e., parameter studies and error assessments to determine both the quality of the calculation and to estimate expected deviations of simulations from experiments. The exascale environment must provide a performance envelope suitable both for capacity calculations (high through-put) and full system capability runs (high performance). Analysis of the results place shared demand on both the I/O as well as the visualization subsystems

    Quantification and analysis of icebergs in a tidewater glacier fjord using an object-based approach

    Get PDF
    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability

    Seahawk: moving beyond HTML in Web-based bioinformatics analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis.</p> <p>Results</p> <p>We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format.</p> <p>Conclusion</p> <p>As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, <it>ad hoc </it>analysis workflow creation without the assistance of a programmer.</p

    Public attitudes to inequality in water distribution: Insights from preferences for water reallocation from irrigators to Aboriginal Australians

    Get PDF
    Water allocation regimes that adjudicate between competing uses are in many countries under pressure to adapt to increasing demands, climate‐driven shortages, expectations for equity of access, as well as societal changes in values and priorities. International authorities expound standards for national allocation regimes that include robust processes for addressing the needs of ‘new entrants' and for varying existing entitlements within sustainable limits. The claims of Indigenous peoples to water represents a newly recognised set of rights and interests that will test the ability of allocation regimes to address the global water governance goal of equity. No study has sought to identify public attitudes or willingness to pay for a fairer allocation of water rights between Indigenous and non‐Indigenous people. We surveyed households from the jurisdictions of Australia's Murray‐Darling Basin, a region undergoing a historic government‐led recovery of water, and found that 69.2% of respondents support the principle of reallocating a small amount of water from irrigators to Aboriginal people via the water market. Using contingent valuation, we estimated households are willing to pay A21.78inaoneofflevy.TheaggregatevaluecalculatedforhouseholdsinthebasinsjurisdictionswasA21.78 in a one‐off levy. The aggregate value calculated for households in the basin's jurisdictions was A74.5 million, which is almost double a recent government commitment to fund the acquisition of entitlements for Aboriginal nations of this basin. Results varied by state of residency and affinity with environmental groups. An information treatment that presented narrative accounts from Aboriginal people influenced the results. Insights from this study can inform water reallocation processes
    corecore