20 research outputs found

    For Psyche

    Get PDF
    In the present study we investigated peroxisomal functions in cultured human muscle cells from control subjects and from a patient with the Zellweger syndrome, a genetic disease characterized by the absence of morphologically distinguishable peroxisomes in liver and kidney. In homogenates of cultured muscle cells from control subjects, catalase is contained within subcellular particles, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity is present and palmitoyl-CoA can be oxidized by a peroxisomal beta-oxidative pathway; these findings are indicative of the presence of peroxisomes in the cells. In homogenates of cultured muscle cells from the patient with the Zellweger syndrome, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity was deficient, peroxisomal beta-oxidation of palmitoyl-CoA was impaired and catalase was not particle-bound. These findings indicate that functional peroxisomes are absent in muscle from patients with the Zellweger syndrome. We conclude that cultured human muscle cells can be used as a model system to study peroxisomal functions in muscle and the consequences for this tissue of a generalized dysfunction of peroxisome

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19(1,2), host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases(3-7). They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.Radiolog

    Developing a standardized and sustainable resident sign-out process: An AIAMC National Initiative IV Project

    No full text
    Background: Duty hour restrictions imposed upon training physicians have led to increased handoffs and the potential for discontinuity in patient care. Research has demonstrated a significant opportunity for decreasing errors with a standardized handoff process. Thus, we designed a project to implement a standardized approach to handoffs, specifically resident-to-resident handoffs.Methods: We performed an initial assessment of the tools, practices, and policies currently in use to facilitate handoffs institutionally. Subsequently, we created a template within our electronic medical record and paired it with a verbal handoff process. We developed a plan to build department champions to disseminate information and provide mentorship. We intend to evaluate this process at designated intervals to ensure sustainability.Results: Survey results were obtained from 45 faculty and 61 residents from a wide representation of specialties. We found that although a subjective sense of satisfaction was present, there was substantial variability between processes. Seventy-two percent of faculty reported at least once identifying a patient safety issue that occurred as a result of the handoff process, but 77% of faculty sometimes or never supervised the process. Eighty percent of residents reported sometimes or never receiving feedback on their handoffs.Conclusions: Based on medicine's evolving environment and an apparent opportunity to optimize resident training and patient safety, we developed a plan to standardize, implement, and evaluate resident handoffs within our system. The results thus far have resulted in a gap analysis that will serve as the basis for reporting finalized data at the conclusion of this prospective study

    Differentiation and proliferation of respiration-deficient human myoblasts

    No full text
    Replication and transcription of mitochondrial DNA were impaired in dividing human myoblasts exposed to ethidium bromide. MtDNA content decreased linearly per cell division and mitochondrial transcript levels declined rapidly, resulting in respiration-deficiency of the myoblasts. Despite the absence of functional mitochondria the cells remained able to proliferate when grown under specific culture conditions. However, the formation of myotubes was severely impaired in respiration-deficient myoblasts. We conclude that differentiation of myoblasts into myotubes is more dependent on mitochondrial function than proliferation of myoblast

    Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures

    No full text
    Among the diverse family of collagens, the widely expressed microfibrillar type VI collagen is believed to play a role in bridging cells with the extracellular matrix. Several observations imply substrate properties for cell attachment as well as association with major collagen fibers. Previously, we have established genetic linkage between the genes encoding the three constituent alpha-chains of type VI collagen and Bethlem myopathy. A distinctive feature of this autosomal dominant disorder consists of contractures of multiple joints in addition to generalized muscular weakness and wasting. Nine kindreds show genetic linkage to the COL6A1-COL6A2 cluster on chromosome 21q22.3 (refs 3,4; manuscript submitted) whereas one family shows linkage to markers on chromosome 2q37 close to COL6A3 (ref. 5). Sequence analysis in four families reveals a mutation in COL6A1 in one and a COL6A2 mutation in two other kindreds. Both mutations disrupt the Gly-X-Y motif of the triple helical domain by substitution of Gly for either Val or Ser. Analogous to the putative perturbation of the anchoring function of the dystrophin-associated complex in congenital muscular dystrophy with mutations in the alpha 2-subunit of laminin, our observations suggest a similar mechanism in Bethlem myopath

    Myelin and Axon Pathology in a Long-Term Study of PMP22-Overexpressing Mice

    No full text
    We analyzed clinical and pathological disease in 2 peripheral myelin protein-22 (PMP22) overexpressing mouse models for 1.5 years. C22 mice have 7 and C3-PMP mice have 3 to 4 copies of the human PMP22 gene. C3-PMP mice showed no overt clinical signs at 3 weeks and developed mild neuromuscular impairment; C22 mice showed signs at 3 weeks that progressed to severe impairment. Adult C3-PMP mice had very similar, stable, low nerve conduction velocities similar to adults with human Charcot-Marie-Tooth disease type 1A (CMT1A); velocities were much lower in C22 mice. Myelination was delayed, and normal myelination was not reached in either model but the degree of dysmyelination in C3-PMP mice was considerably less than that in C22 mice; myelination was stable in the adult mice. Numbers of myelinated, fibers were reduced at 3 weeks in both models, suggesting that normal numbers of myelinated fibers are not reached during development in the models. In adult C3-PMP and wild-type mice, there was no detectable loss of myelinated fibers, whereas there was clear loss of myelinated fibers in C22 mice. In C3-PMP mice, there is a balance between myelination status and axonal function early in life, whereas in C22 mice, early reduction of axons is more severe and there is major loss of axons in adulthood. We conclude that C3-PMP mice may be an appropriate model for most CMT1A patients, whereas C22 mice may be more relevant to severely affected patients in the CMT1 spectru
    corecore