13 research outputs found

    High Speed Simulation Analytics

    Get PDF
    Simulation, especially Discrete-event simulation (DES) and Agent-based simulation (ABS), is widely used in industry to support decision making. It is used to create predictive models or Digital Twins of systems used to analyse what-if scenarios, perform sensitivity analytics on data and decisions and even to optimise the impact of decisions. Simulation-based Analytics, or just Simulation Analytics, therefore has a major role to play in Industry 4.0. However, a major issue in Simulation Analytics is speed. Extensive, continuous experimentation demanded by Industry 4.0 can take a significant time, especially if many replications are required. This is compounded by detailed models as these can take a long time to simulate. Distributed Simulation (DS) techniques use multiple computers to either speed up the simulation of a single model by splitting it across the computers and/or to speed up experimentation by running experiments across multiple computers in parallel. This chapter discusses how DS and Simulation Analytics, as well as concepts from contemporary e-Science, can be combined to contribute to the speed problem by creating a new approach called High Speed Simulation Analytics. We present a vision of High Speed Simulation Analytics to show how this might be integrated with the future of Industry 4.0

    Toward interoperable bioscience data

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Genetics 44 (2012): 121-126, doi:10.1038/ng.1054.To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open 'data commoning' culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared 'Investigation-Study-Assay' framework to support that vision.The authors also acknowledge the following funding sources in particular: UK Biotechnology and Biological Sciences Research Council (BBSRC) BB/I000771/1 to S.-A.S. and A.T.; UK BBSRC BB/I025840/1 to S.-A.S.; UK BBSRC BB/I000917/1 to D.F.; EU CarcinoGENOMICS (PL037712) to J.K.; US National Institutes of Health (NIH) 1RC2CA148222-01 to W.H. and the HSCI; US MIRADA LTERS DEB-0717390 and Alfred P. Sloan Foundation (ICoMM) to L.A.-Z.; Swiss Federal Government through the Federal Office of Education and Science (FOES) to L.B. and I.X.; EU Innovative Medicines Initiative (IMI) Open PHACTS 115191 to C.T.E.; US Department of Energy (DOE) DE-AC02- 06CH11357 and Arthur P. Sloan Foundation (2011- 6-05) to J.G.; UK BBSRC SysMO-DB2 BB/I004637/1 and BBG0102181 to C.G.; UK BBSRC BB/I000933/1 to C.S. and J.L.G.; UK MRC UD99999906 to J.L.G.; US NIH R21 MH087336 (National Institute of Mental Health) and R00 GM079953 (National Institute of General Medical Science) to A.L.; NIH U54 HG006097 to J.C. and C.E.S.; Australian government through the National Collaborative Research Infrastructure Strategy (NCRIS); BIRN U24-RR025736 and BioScholar RO1-GM083871 to G.B. and the 2009 Super Science initiative to C.A.S

    The FAIR Guiding Principles for scientific data management and stewardship

    Get PDF
    There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community

    Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment

    Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data.

    No full text
    In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines

    Contributions and roles related to content as they correspond to identifier creation versus identifier reuse.

    No full text
    <p>The decision about whether to create a new identifier or reuse an existing one depends on the role you play in the creation, editing, and republishing of content; for certain roles (and when several roles apply) that decision is a judgement call. Asterisks convey cases in which the best course of action is often to correct/improve the original record in collaboration with the original source; the guidance about identifier creation versus reuse is meant to apply only when such collaboration is not practicable (and an alternate record is created). It is common that a given actor may have multiple roles along this spectrum; for instance, a given record in monarchinitiative.org may reflect a combination of (a) corrections Monarch staff made in collaboration with the original data source, (b) post-ingest curation by Monarch staff, (c) expanded content integrated from multiple sources.</p

    Anatomy of a web-based identifier.

    No full text
    <p>An example of an exemplary unique resource identifier (URI) is below; it is comprised of American Standard Code for Information Interchange (ASCII) characters and follows a pattern that starts with a fixed set of characters (URI pattern). That URI pattern is followed by a local identifier (local ID)—an identifier which, by itself, is only guaranteed to be locally unique within the database or source. A local ID is sometimes referred to as an “accession.” Note this figure illustrates the simplest representation; nuances regarding versioning are covered in Lesson 6 and <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.2001414#pbio.2001414.g005" target="_blank">Fig 5</a>.</p
    corecore