3,138 research outputs found

    An adaptive Metropolis-Hastings scheme: sampling and optimization

    Full text link
    We propose an adaptive Metropolis-Hastings algorithm in which sampled data are used to update the proposal distribution. We use the samples found by the algorithm at a particular step to form the information-theoretically optimal mean-field approximation to the target distribution, and update the proposal distribution to be that approximatio. We employ our algorithm to sample the energy distribution for several spin-glasses and we demonstrate the superiority of our algorithm to the conventional MH algorithm in sampling and in annealing optimization.Comment: To appear in Europhysics Letter

    Analytic Continuation for Asymptotically AdS 3D Gravity

    Get PDF
    We have previously proposed that asymptotically AdS 3D wormholes and black holes can be analytically continued to the Euclidean signature. The analytic continuation procedure was described for non-rotating spacetimes, for which a plane t=0 of time symmetry exists. The resulting Euclidean manifolds turned out to be handlebodies whose boundary is the Schottky double of the geometry of the t=0 plane. In the present paper we generalize this analytic continuation map to the case of rotating wormholes. The Euclidean manifolds we obtain are quotients of the hyperbolic space by a certain quasi-Fuchsian group. The group is the Fenchel-Nielsen deformation of the group of the non-rotating spacetime. The angular velocity of an asymptotic region is shown to be related to the Fenchel-Nielsen twist. This solves the problem of classification of rotating black holes and wormholes in 2+1 dimensions: the spacetimes are parametrized by the moduli of the boundary of the corresponding Euclidean spaces. We also comment on the thermodynamics of the wormhole spacetimes.Comment: 28 pages, 14 figure

    Geometric Aspects of the Moduli Space of Riemann Surfaces

    Full text link
    This is a survey of our recent results on the geometry of moduli spaces and Teichmuller spaces of Riemann surfaces appeared in math.DG/0403068 and math.DG/0409220. We introduce new metrics on the moduli and the Teichmuller spaces of Riemann surfaces with very good properties, study their curvatures and boundary behaviors in great detail. Based on the careful analysis of these new metrics, we have a good understanding of the Kahler-Einstein metric from which we prove that the logarithmic cotangent bundle of the moduli space is stable. Another corolary is a proof of the equivalences of all of the known classical complete metrics to the new metrics, in particular Yau's conjectures in the early 80s on the equivalences of the Kahler-Einstein metric to the Teichmuller and the Bergman metric.Comment: Survey article of our recent results on the subject. Typoes corrrecte

    Cold acclimation of Concord grapevines III. Relationship between cold hardiness, tissue water content, and shoot maturation

    Get PDF
    Cold acclimation of Concord grapevines in Michigan begins as early as late August in tissues at the base of current season's growth.Increases in cold hardiness are closely related to decreases in tissue water content as stems achieve vegetative maturity.Greatest differences in hardiness and water content are found in tissues which vary the most in extent of maturation on both primary shoots and summer laterals.Increases in cold resistance are not related to water saturation deficit (WSD) of shoots

    Hybrid Local-Order Mechanism for Inversion Symmetry Breaking

    Get PDF
    Using classical Monte Carlo simulations, we study a simple statistical mechanical model of relevance to the emergence of polarisation from local displacements on the square and cubic lattices. Our model contains two key ingredients: a Kitaev-like orientation-dependent interaction between nearest neighbours, and a steric term that acts between next-nearest neighbours. Taken by themselves, each of these two ingredients is incapable of driving long-range symmetry breaking, despite the presence of a broad feature in the corresponding heat capacity functions. Instead each component results in a "hidden" transition on cooling to a manifold of degenerate states, the two manifolds are different in the sense that they reflect distinct types of local order. Remarkably, their intersection---\emph{i.e.} the ground state when both interaction terms are included in the Hamiltonian---supports a spontaneous polarisation. In this way, our study demonstrates how local ordering mechanisms might be combined to break global inversion symmetry in a manner conceptually similar to that operating in the "hybrid" improper ferroelectrics. We discuss the relevance of our analysis to the emergence of spontaneous polarisation in well-studied ferroelectrics such as BaTiO3_3 and KNbO3_3.Comment: 8 pages, 8 figure

    Algebraic-geometrical formulation of two-dimensional quantum gravity

    Get PDF
    We find a volume form on moduli space of double punctured Riemann surfaces whose integral satisfies the Painlev\'e I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite dimensional moduli space in the spirit of Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.Comment: 10 pages, Latex fil

    The value of the follow-through derives from motor learning depending on future actions.

    Get PDF
    In ball sports, we are taught to follow through, despite the inability of events after contact or release to influence the outcome [1, 2]. Here we show that the specific motor memory active at any given moment critically depends on the movement that will be made in the near future. We demonstrate that associating a different follow-through movement with two motor skills that normally interfere [3-7] allows them to be learned simultaneously, suggesting that distinct future actions activate separate motor memories. This implies that when learning a skill, a variable follow-through would activate multiple motor memories across practice, whereas a consistent follow-through would activate a single motor memory, resulting in faster learning. We confirm this prediction and show that such follow-through effects influence adaptation over time periods associated with real-world skill learning. Overall, our results indicate that movements made in the immediate future influence the current active motor memory. This suggests that there is a critical time period both before [8] and after the current movement that determines motor memory activation and controls learning.This is the final published version. The article was originally published in Current Biology, Volume 25, Issue 3, p397–401, 2 February 2015, DOI: 10.1016/j.cub.2014.12.03

    Black Hole Thermodynamics and Riemann Surfaces

    Get PDF
    We use the analytic continuation procedure proposed in our earlier works to study the thermodynamics of black holes in 2+1 dimensions. A general black hole in 2+1 dimensions has g handles hidden behind h horizons. The result of the analytic continuation is a hyperbolic 3-manifold having the topology of a handlebody. The boundary of this handlebody is a compact Riemann surface of genus G=2g+h-1. Conformal moduli of this surface encode in a simple way the physical characteristics of the black hole. The moduli space of black holes of a given type (g,h) is then the Schottky space at genus G. The (logarithm of the) thermodynamic partition function of the hole is the Kaehler potential for the Weil-Peterson metric on the Schottky space. Bekenstein bound on the black hole entropy leads us to conjecture a new strong bound on this Kaehler potential.Comment: 17+1 pages, 9 figure

    Embryonic Pattern Scaling Achieved by Oppositely Directed Morphogen Gradients

    Full text link
    Morphogens are proteins, often produced in a localised region, whose concentrations spatially demarcate regions of differing gene expression in developing embryos. The boundaries of expression must be set accurately and in proportion to the size of the one-dimensional developing field; this cannot be accomplished by a single gradient. Here, we show how a pair of morphogens produced at opposite ends of a developing field can solve the pattern-scaling problem. In the most promising scenario, the morphogens effectively interact according to the annihilation reaction A+BA+B\to\emptyset and the switch occurs according to the absolute concentration of AA or BB. In this case embryonic markers across the entire developing field scale approximately with system size; this cannot be achieved with a pair of non-interacting gradients that combinatorially regulate downstream genes. This scaling occurs in a window of developing-field sizes centred at a few times the morphogen decay length.Comment: 24 pages; 11 figures; uses iopar

    Learning, Social Intelligence and the Turing Test - why an "out-of-the-box" Turing Machine will not pass the Turing Test

    Get PDF
    The Turing Test (TT) checks for human intelligence, rather than any putative general intelligence. It involves repeated interaction requiring learning in the form of adaption to the human conversation partner. It is a macro-level post-hoc test in contrast to the definition of a Turing Machine (TM), which is a prior micro-level definition. This raises the question of whether learning is just another computational process, i.e. can be implemented as a TM. Here we argue that learning or adaption is fundamentally different from computation, though it does involve processes that can be seen as computations. To illustrate this difference we compare (a) designing a TM and (b) learning a TM, defining them for the purpose of the argument. We show that there is a well-defined sequence of problems which are not effectively designable but are learnable, in the form of the bounded halting problem. Some characteristics of human intelligence are reviewed including it's: interactive nature, learning abilities, imitative tendencies, linguistic ability and context-dependency. A story that explains some of these is the Social Intelligence Hypothesis. If this is broadly correct, this points to the necessity of a considerable period of acculturation (social learning in context) if an artificial intelligence is to pass the TT. Whilst it is always possible to 'compile' the results of learning into a TM, this would not be a designed TM and would not be able to continually adapt (pass future TTs). We conclude three things, namely that: a purely "designed" TM will never pass the TT; that there is no such thing as a general intelligence since it necessary involves learning; and that learning/adaption and computation should be clearly distinguished.Comment: 10 pages, invited talk at Turing Centenary Conference CiE 2012, special session on "The Turing Test and Thinking Machines
    corecore