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Using classical Monte Carlo simulations, we study a simple statistical mechanical model of relevance to the
emergence of polarisation from local displacements on the square and cubic lattices. Our model contains two
key ingredients: a Kitaev-like orientation-dependent interaction between nearest neighbours, and a steric term
that acts between next-nearest neighbours. Taken by themselves, each of these two ingredients is incapable of
driving long-range symmetry breaking, despite the presence of a broad feature in the corresponding heat capacity
functions. Instead each component results in a “hidden” transition on cooling to a manifold of degenerate
states; the two manifolds are different in the sense that they reflect distinct types of local order. Remarkably,
their intersection—i.e. the ground state when both interaction terms are included in the Hamiltonian—supports
a spontaneous polarisation. In this way, our study demonstrates how local ordering mechanisms might be
combined to break global inversion symmetry in a manner conceptually similar to that operating in the “hybrid”
improper ferroelectrics. We discuss the relevance of our analysis to the emergence of spontaneous polarisation
in well-studied ferroelectrics such as BaTiO3 and KNbOsg.

I. INTRODUCTION

Central to the study of ferroelectric materials is an un-
derstanding of the collective mechanisms responsible for
inversion-symmetry breaking in solids® For proper ferro-
electrics (e.g. the long-studied PbTiO3)" the key collective
behaviour is a single zone-centre polar phonon that softens on
cooling the paraelectric parent below the Curie temperature,
Tc. A conceptually similar picture emerges in improper fer-
roelectrics such as Gda(MoO,4)s and YMnOQOg, where the polar
phonon instability is driven by a non-polar distortion that ac-
tually acts as the primary order parameter.*™®

An important recent development in the field has been the
hybrid improper ferroelectric (HIF) mechanism relevant to
e.g. CazMny0; 7Y The remarkable feature of this mech-
anism is that spontaneous polarisation emerges via trilin-
ear coupling to two non-polar distortion modes. The im-
portant implication in the particular context of multiferroics
is that polarisation—-magnetisation coupling might be target-
ted through judicious combinations of non-polar distortions
(e.g. tilts or cation order) rather than attempting to recon-
cile the inherently antagonistic requirements for magnetic or-
der (partially-filled d orbitals) and polar instabilities (closed-
shell d-electron configurations) ' Such “tilt-engineering” ap-
proaches have now been exploited to remarkable effect in the
design of (Ca,Sri_y)1.15Tby s5Fe2O7, which shows sponta-
neous polarisation and magnetisation at room temperature >

In all these mechanisms, the collective distortions respon-
sible for inversion-symmetry breaking—be they polar insta-
bilities, octahedral tilts, cation ordering, or vacancy order-
ing processes—are each associated with individual irreducible
representations of the parent crystal symmetry. In other
words, polarisation emerges as a result of the relation

I~ C g,0f, (1)

where I'~ is a (generic) polar distortion and the collective dis-
tortion space spanned by the direct sum is generated by a small

FIG. 1: Schematic representations of local and collective polarisa-
tion in the (a) cubic and (b) tetragonal phases of BaTiOs or KNbO3 1
The dipole moments within individual perovskite cells are shown as
coloured arrows. The collective polarisation for a given column (par-
allel to any one of the three crystal axes) is shown as a black or white
arrow. In both phases there is strong local order (common polari-
sation projection along a given axis) but macroscopic inversion sym-
metry is broken only in the tetragonal phase. (c) Local polarisation is
driven by a second-order Jahn-Teller distortion of (e.g.) the TiOg co-
ordination environment in which the Ti atom (teal sphere) displaces
towards a single corner of the corresponding unit cell (red arrow).
The eight possible displacement vectors (111) are shown in various
colours.

and finite number of unstable distortion modes (possibly non-
polar) with irredicuble representations CI%. For proper ferro-
electrics Eq. () reduces to '™ = ®~. While this is the con-
ventional picture for systems such as BaTiO3 and KNbO3 .12
recent total scattering measurements'® have supported the hy-
pothesis of Refs. |[14l15/that the paraelectric/ferroelectric tran-
sition may be strongly order/disorder in nature. In this al-
ternate picture the ferroelectric transition involves a complex
reorganisation of cation positions that cannot properly be de-
scribed in the terms of Eq. (I). This is because both the para-
electric (cubic) and polar (tetragonal) phases support differ-
ent types of strongly-correlated disorder that are not related to
one another by activation of a small and finite set of distor-
tion modes [Fig. [I]]. Instead the two states are related by the
presence or absence of a particular type of local order!>1



In this study, we explore the concept of establishing HIF
mechanisms based on coupling of polarisation to distortions
arising from local order. Our approach is to develop a sim-
ple microscopic model containing just two ingredients, each
of which drives its own form of local ordering to a non-polar
disordered phase with a manifold of degenerate ground states.
These two ingredients are our local analogues of e.g. the tilt
and rotation distortions in the HIF mechanism of CazMn,07 %
Whereas the individual HIF distortions are localised in k-
space and collective in direct space, the two ingredients of our
model drive order that is localised in r-space and collective in
reciprocal space. Using Monte Carlo (MC) simulations, we
show that the full Hamiltonian has as its ground state a disor-
dered, but polar, phase that is conceptually related to tetrag-
onal BaTiO3z or KNbO3. Hence a collective polar distortion
emerges from coupling to two non-polar local-order instabil-
ities. The key implication of this result is that judicious con-
trol over local ordering phenomena might offer an alternative
route to as-yet unexplored classes of ferroelectric materials.

Our paper is arranged as follows. We begin by introducing
the general model at the heart of our study, relating its ingre-
dients to simple physical interactions likely to be relevant to
real materials. We describe our MC approach and proceed
to establish the phase behaviour of the two individual com-
ponents of our Hamiltonian, demonstrating the existence of
local-structure transitions in each case. Our focus then shifts
to the behaviour of the combined interaction model. We de-
termine a general phase diagram and show explicitly the cou-
pling of local order to macroscopic polarisation. For ease of
interpretation, we focus in these studies on a two-dimensional
representation of the Hamiltonian. Nevertheless, our paper
concludes with a discussion of the (straightforward) extension
to three dimensions, which allows us to draw comparisons to
physical systems such as BaTiOs and KNbOs.

II. RESULTS AND DISCUSSION
A. Interaction model

Our 2D model concerns a square array of interacting sites.
Each site r may adopt one of four equivalent states e, which
we associate with constant-magnitude off-center displace-
ments polarised along the square diagonals [Fig. [2(a)]; hence
ey € (11) in two dimensions. In a physical system, this local
displacement may be associated with (by way of example) a
second-order Jahn Teller (SOJT) distortion or chemical bond-
ing asymmetry; we are considering the particular case where
all local displacements are of equal magnitude and are strictly
polarised along the cell diagonals. Note that a simple cou-
pling Je, - e,» between neighbouring sites r,r’ would result
in a polar instability for J < 0, but would give non-polar
antiferroelectric and disordered ground states for J > 0 and
J = 0, respectively.

The full Hamiltonian of our model does not include this

particular interaction; instead we have

H=-J Z (efeg atelely) +Jo Z d(er + €rie, ),

r

2

with Jq, Jo > 0, 6 the Kronecker delta function, and a, b the
lattice vectors.

The first term in Eq. (2) is conceptually related to the Ki-
taev model? of relevance to RuCls and NayIrOs 1812 in both
cases the interaction is bond-dependent. It describes a dis-
crete “compass” model??2! that separates the 2D lattice into
a set of non-interacting 1D Ising chains. Nearest neighbours
separated by +a interact via the x component of their states
(i.e., ef, ey); likewise those separated by +b interact via the
y components e¥,e¥,. Since J; > 0, energy is minimised
whenever neighbouring states displace in the same direction
relative to the axis along which they are connected. This
interaction—if perhaps obscure at first sight—has a sound
chemical basis for systems with SOJT distortions. Taking the
example of a square ABO, lattice, such distortions would in-
volve mixing of empty B d states with filled O p states to give
a neighbouring pair of strong B-O bonds for each B site; the
requirement that each O atom is involved in exactly one strong
B-O bond gives precisely the Kitaev-like interaction present
in our model [Fig.2(a)].

The second term in Eq. (2) penalises next-nearest neighbour
displacements that act in direct opposition. This is a crude rep-
resentation of the steric interaction that would arise from cor-
related B-site displacements towards a common A-site cation
[Fig.[2(b)]. The same type of next-nearest neighbour displace-
ment pattern is penalised by a dipolar interaction—which one
might argue is a more physical ingredient in a Hamiltonian—
but the corresponding ground state is ordered and hence un-
suitable for the purposes of our study. We anticipate that
screened dipolar interactions probably account for the inter-
action in some physical systems.

In this context, and for ease of discussion, we hereafter de-
note the two components of Eq. (Z) as ‘Kitaev’ and ‘steric’

FIG. 2: (a) A square ABO; lattice with alternating strong (black)
and weak (white) B-O bonds. A-site cations are shown in brown, B-
site in teal, and O in red. Note that each O atom is involved in exactly
one strong and one weak B—O bond; this results in an alternating
pattern of strong—weak—strong—. .. along each axis. (b) The steric
interaction term of Eq. (Z) penalises the displacement of two nearest-
neighbour (diagonally-related) B-site cations towards one another—
and hence towards a single common A-site cation.



interactions. We proceed to study the phase behaviour these
interactions drive—first in isolation, and then in tandem.

B. Monte Carlo simulations

Our MC simulations made use of a custom-written code
based on that employed in Ref. and were carried out as
follows. A starting configuration corresponding to a 30 x 30
supercell of the square unit cell was decorated randomly with
states e, € {[1,1],[1,1],[1,1],[1,1]}. We made use of peri-
odic boundary conditions and followed the standard Metropo-
lis Monte Carlo algorithmfzﬁvl moves involved random reas-
signment of the state of a randomly-selected site, and ener-
gies E were calculated for a given set of Ji, Jo parameters
according to Eq. (2). Simulations were started at high tem-
peratures and slowly cooled. We ensured equilibration at each
temperature step by discarding ten times as many moves as
were required for the system to become uncorrelated from its
initial state (tg). We then performed a further 100¢y moves
to calculate the specific heat from the fluctuation—dissipation
relation

(E?) — (B)?

C =
kgT? 7

3)

where kg is the Boltzmann constant. Results were averaged
over 5 independent runs.

C. Behaviour of limiting cases

We begin by considering the phase behaviour of the pure
Kitaev (J> = 0) and pure steric (J; = 0) interaction models.
In both cases our MC simulations identified the existence of
a single broad anomaly in the specific heat that we will come
to show accompanies a meaningful change in local structure
[Fig. . The maximum of this anomaly occurs at T'/.J; ~ %
In each case there is no long-range symmetry breaking at any
finite temperature: this is is evident in the single-particle cor-
relation function (e}, the magnitude of which vanishes within
uncertainty for both models at all temperatures. This quantity
is proportional to the bulk polarisation, which is therefore also
zero for both models at all temperatures.

Despite the absence of long-range symmetry breaking in ei-
ther transition, our thermodynamic calculations clearly show
the loss of configurational entropy on cooling that we asso-
ciate with local ordering processes. To illustrate this point we
calculate two “local-order parameters” for each MC configu-
ration:

1
o = 7 +ea)’+ (e +ely,)) -4, @

¢s =1- 4<6(er + er+e,)>7 )

with the average taken over all sites r. By design, the value of
¢k is unity for any configuration in which all pairs of neigh-
bouring states displace in the same direction relative to the
axis along which they are connected, and zero for a random
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FIG. 3: Microscopic phase behaviour in the single-term “steric”

(J1 = 0) and “Kitaev” (Jo = 0) models described by Eq. @)
(a) Fragments of the low-temperature displacement configurations
are disordered in both cases, but contain different types of local or-
der. The steric model contains no next-nearest neighbour displace-
ments of the form depicted in Fig. {b) and in the Kitaev model
each row or column shares a common polarisation along the corre-
sponding row or column axis. (b) The corresponding single-crystal
scattering patterns are sensitive to two-particle correlation functions
and reflect non-trivial disorder of different types in the two low-
temperature configurations. The Bragg intensities (a measure of the
single-particle correlations) are identical in the two cases. (c) Ther-
modynamic and ordering behaviour of the variable-temperature MC
simulations. The top panels show the temperature dependence of the
specific heat with the position of its maximum indicated by a vertical
dashed line. The middle panels show the temperature dependence of
the local order parameters ¢k (red) and ¢ (blue). Note the emer-
gence of local-order of (only) one type at temperatures below the
corresponding specific heat anomaly. The bottom panels show the
macroscopic polarisation magnitude |(e)|, which is zero within error
for all MC temperatures.



set of displacements e,. Likewise a value ¢, = 1 implies
the complete absence of any next-nearest neighbour displace-
ments acting in direct opposition and ¢ = 0 the random case.
The temperature dependence of these two parameters for the
Kitaev and steric interaction models is shown in Fig.[3c); we
observe a clear progression from an uncorrelated paraelectric
state (¢ ~ 0) at high temperatures to distinct locally-ordered
paraelectric states at temperatures below the relevant specific
heat anomalies.

The presence of different types of correlated disorder in the
two limiting-case models at low temperatures is evident from
the corresponding diffraction patterns?* shown in Fig. b).
The Bragg intensities for the two models are identical, which
is necessarily the case given the absence of any variation in
single-particle correlation functions across the specific heat
anomalies. Instead the two families of low-temperature states
differ only in terms of the pair (and higher-order) correlation
functions. In this sense the local-order transitions we observe
are “hidden” 2223 and are conceptually related to the spin-ice
transition in e.g. HooTisO7 and the superstructure transition
of some inclusion compounds?®*” Such transitions are not
well described in terms of the conventional Landau paradigm,
and can sometimes be viewed instead as a Higgs transition of
an emergent gauge theory.2®

Representative configurations themselves are illustrated in
Fig.[3[a); we note that the Kitaev phase is related to the “SoC”
procrystalline state as described in Ref. 29| and observed ex-
perimentally in perovskite oxynitrides ***! This state supports
strong 1D correlations along the lattice axes—as is evident in
the diffraction pattern via the presence of continuous streaks
of diffuse scattering perpendicular to the reciprocal lattice
axes and is expected from the relationship to a decoupled 1D
Ising model. Indeed the specific heat anomaly for this model
[Fig. c)] is equivalent to that obtained for the 1D Ising case.
In both cases there is no strict long-range 1D order at low tem-
peratures; rather, regions of medium-range 1D order (i.e. over
many unit cells, with lengthscale inversely proportional to T")
are separated by domain boundaries (Ising spin flips). With
reference to our MC configurations, 1D order appears when
the ordering lengthscale is commensurate with our simulation
box size.

The low-temperature state of the steric interaction model
is rather more disordered. This is evident in the diffraction
pattern itself [Fig. 3[b)], for which the diffuse scattering com-
ponent is only weakly-structured throughout reciprocal space.
Nevertheless the state is not random; the form of local order
present involves the complete absence of next-nearest neigh-
bour interactions of the type shown in Fig. 2b).

So, by themselves, each of the Kitaev and steric interaction
terms in Eq. drives a non-polar instability of the parent
paraelectric state with respect to local ordering: these instabil-
ities are localised in real-space (i.e. strong local order) and col-
lective in reciprocal space (i.e. associated with large families
of k-points). In particular, the phase behaviour of both models
cannot be described in terms of the activation of a small and
finite set of collective (phonon-like) distortion modes.

D. Behaviour of intermediate case

We now consider the effect of coupling Kitaev and steric
interactions by studying the behaviour of our Hamiltonian for
non-zero values of both J; and J,. We define the parameters

6 = tan~! <f>7 (6)

J = J1+ Jo, @)

such that the pure-Kitaev and pure-steric interaction models
explored in the previous section correspond to the cases § = 0
and 7 /2, respectively.

Monte Carlo simulations carried out for the intermediate
case Jo/J1 = 9% (i.e., 8 = 7/35)—a value we will come to
show is representative of the general case—indicate the pres-
ence of two specific heat anomalies [Fig.[]. Inspection of the
temperature-dependence of the local order parameters ¢k, ¢
shows that the higher-temperature anomaly coincides with the
onset of Kitaev order, and the lower-temperature anomaly
with the onset of local order found in the steric interaction
model described above [Fig. E]]; hence we label the two tran-
sition temperatures as Tk and Tj, respectively.

The key result of our study concerns the behaviour of the
single-particle correlation function (e) across these two tran-
sitions. This correlation function is a direct measure of bulk

polarisation: P = |(e)|. As for the individual Kitaev and
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FIG. 4: Temperature dependence of thermodynamic and local-order
parameters for the intermediate case (6 = 7/35). The heat capacity
(top) shows two temperature anomalies; the higher (at Tk) is asso-
ciated with the onset of Kitaev-type local order, and the lower (at
T;) with the disappearance of local interactions of the type shown in
Fig.[2[b). The temperature dependence of the local order parameters
is shown in the middle panel. The bottom panel shows the tempera-
ture dependence of the total polarisation magnitude, which saturates
on cooling below 7.



steric interaction models, we find no meaningful change in P
across Tx [Fig. E[]; hence this local-order transition is again
hidden and is not associated with any long-range symmetry
breaking. By contrast, the transition at 7y involves the emer-
gence of a non-zero bulk polarisation and so represents a Curie
point with Tc = T;. Consequently the phase behaviour for
0 < 6 < w/4 involves three regimes. At low temperatures
T < Tt the system is polar, with local order that reflects at
once the ground states of both Kitaev and steric-interaction
models. For intermediate temperatures Tc < T < Tk, the
system is non-polar and resembles the low-temperature be-
haviour for & = 0 (Kitaev order). Finally, at temperatures
above Tx local order is progressively lost and the system ap-
proaches the paraelectric limit. Representative configurations
taken from these three regimes are shown in Fig. 5] together
with the corresponding diffraction patterns. As anticipated,
the behaviour at Tk closely resembles that observed in the
pure-Kitaev limit (6 = 0).

The long-range symmetry-breaking process identified by
the behaviour of the order parameter P at I¢ is clearly ev-
ident in both real space and reciprocal space. We interpret
this behaviour by contrasting against the low temperature be-
haviour of the pure-Kitaev model. In the Kitaev ground states
each row or column has a common polarisation along the
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FIG. 5: Representative displacement configurations and single-

crystal scattering patterns for the three temperature regimes of the
intermediate case (§ = 7/35) studied in Fig.[4] (a) At low temper-
atures T° < Tt the system is polar; in the specific example shown
here the bulk polarisation is oriented to the right-hand side. Note
the persistence of configurational disorder in the vertical compo-
nent of the polarisation for a given column of displacement vectors.
This persistent disorder is reflected in the presence of streaks of dif-
fuse scattering perpendicular to the a* axis in reciprocal space. (b)
The intermediate-temperature regime Tc < 1" < T resembles the
low-temperature behaviour of the pure-Kitaev model. The system is
non-polar but strongly-correlated Kitaev-type local order gives rise
to streaks of diffuse scattering perpendicular to both a* and b™ axes
in reciprocal space. (c) At high temperatures 1" > Tx the system is
paraelectric.

row/column axis; the system is disordered because these col-
lective axial polarisations do not themselves order [Fig. Eka)].
This disordered state supports next-nearest neighbour dis-
placements that act in direct opposition, which is evident in
the value of ¢y < 1 for the Kitaev ground state [Fig. 3]. For
finite values of 6, these opposing displacements are penalised
by the Hamiltonian (2), and the polar ground state emerges as
the mechanism by which the displacements are removed. As
in the Kitaev ground state each row/column maintains a com-
mon polarisation, but collective polarisations are now ordered
along one crystal axis [Fig. B{b)]. This order distinguishes
one axis from the other and reduces the (average) plane group
symmetry from p4m to pm. From an average-structure per-
spective it is as if a polar distortion has condensed from a
paraelectric parent phase. Yet, as we have seen, the state at
temperatures just above T supports strong correlations and
is not truly paraelectric. Moreover, even the polar ground
state remains disordered: the diffraction pattern contains con-
tinuous streaks of diffuse scattering parallel to the polar axis

[Fig.[5(b)1.

The phase behaviour driven by the Hamiltonian (2) for
other values of 6 is conceptually very similar. When 6 > 7/4
(Jo > J7) the transition temperatures Tk, 75 swap their order,
and the Curie temperature is now associated with Tk rather
than T;. For § = 7/4 the three transition temperatures coin-
cide. For all values of 8 between (but not equal to) the limits of
0 and /2, the ground state is the polar disordered state iden-
tified above. A representation of the general phase behaviour
is given in Fig. |§| as a radial function of 6 and T'/J. What is
clear is that bulk polarisation emerges as the intersection of
the locally-ordered low-temperature states of the Kitaev and
steric interaction models.

For completeness we note that the use of periodic boundary
conditions will necessarily introduce finite-size effects into
our MC simulations. For example, the 1D order in the Ki-
taev state cannot be truly long-range at any finite temperature;
instead any physical realisation must contain domain walls as-
sociated with Ising spin flips of this component. In terms of
the polar phase that we find to emerge from combined Kitaev-
and steric-type order, the implication is that “bulk” polarisa-
tion will persist for a given e only over a domain of finite (but
arbitrarily large) size. The direction of e will vary from do-
main to domain, with domain size inversely proportional to
temperature. This picture is of course entirely consistent with
the presence of domains within the polar (ferroelectric) state
in the absence of an external field.

E. Extension to three dimensions

Entirely analogous behaviour occurs in a three-dimensional
variant of this same interaction model. The underlying lattice
is now cubic rather than square, and the states representative
of local polarisations parallel to one of the cube diagonals.
Hence the e, € (111) can adopt one of eight vector values.



T

s

FIG. 6: Phase diagram for the model described by Eq. (@), given in
terms of the polar coordinates 7 = T'/J and 6 as defined in Eq. (6).
For each (r, §) value the corresponding sector is coloured by the val-
ues of ¢k (red) and ¢ (blue). The corresponding polarisation mag-
nitude is illustrated by the saturation of the small circle: |(e)| = 0
(white) to > 0.5 (black). Our key result is that polar states (black
points) emerge from the combination of Kitaev- and steric-type lo-
cal order (purple shading). Inset: “local order phase diagram”, with
Kitaev (K), steric (S), polar (P), and “random” (R) states indicated.

The modified Hamiltonian is

Ho= —J1 Y (elel o +elel, +eiei,e)
Y6 [eﬂ —el o0 - r)] : ®)

with a, b, ¢ the lattice vectors. The steric interaction sum
is taken over pairs of next-nearest neighbours r,r’, with

the terms eﬂ, e‘rl, corresponding to the components of ey, e,/

along the axis connecting r and r’:

e - (r'—r)

(r' —r). 9)

| —
T
Again, the individual Kitaev and steric interaction terms each
give rise to specific heat anomalies with no corresponding
changes in macroscopic symmetry.

As a representative example of the intermediate behaviour,
we consider the case Ji/Jo = 25. The temperature-
dependence of the specific heat, shown in Fig. [7] again re-
veals two phase transitions and hence identifies three phase
fields. The nature of these phases is entirely analogous to
that in the various two-dimensional models described above.
The highest-temperature phase is paraelectric; the intermedi-
ate phase is non-polar and supports strong one-dimensional
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FIG. 7: Phase behaviour of a representative example of the inter-
action model described by Eq. (8). (a) Displacement configurations
within the high-temperature “random” (R) state, the intermediate-
regime Kitaev (K) state, and the low-temperature polar (P) state. (b)
The corresponding single-crystal scattering patterns show the emer-
gence of increasingly structured diffuse scattering patterns as local
order is increased. Note the reduced long-range symmetry of the P
state. (c) Temperature dependence of the (top—bottom) specific heat,
local order parameters, and bulk polarisation as determined by MC
simulations.

order of the Kitaev type. Both of these phases have Pm3m
crystal symmetry. By contrast, the lower-temperature transi-
tion involves global symmetry breaking and leads to a ground-
state polar phase with P4mm symmetry. Again this state is
heavily disordered, with collective axial degrees of freedom
present along two of the three crystal axes. This transition is
equivalent to the highest-temperature (cubic/tetragonal) tran-
sition reported in the MC study of BaTiO3 in Ref. 16l

We note for completeness that the Kitaev-like interaction
term in Eq. (8) gives rise to a conceptually-interesting man-
ifold of “ice-like” low-temperature states. Whereas conven-
tional Ising spin ices are based on a topology of connected
tetrahedra and obey the well-known “2-in-2-out” rules,*? the
simple-cubic ices that emerge from the Kitaev model are as-
sembled from connected octahedra that obey a local “3-in-3-
out” rule [Fig. [§]. In cross section these configurations cor-
respond to the square ice model;>#33 moreover the states are
related to the “C3F” procrystalline phase described in Ref. 29
and the distribution of O and N atoms in magnetoresistive
EuWO; 5N; 5134 This is a model to which we expect to re-
turn in future studies.

III. CONCLUDING REMARKS

Returning to the context of inversion symmetry breaking
in ferroelectrics we suggest that the Hamiltonian (8)) is likely
relevant to the emergence of polarisation in well-studied sys-
tems such as BaTiOs and KNbO3. Both single-crystal diffuse



(a)

FIG. 8: Ice-like states for simple polyhedra. (a) The “2-in-2-out”
configuration of pyrochlore spin ices, and (b) the “3-in-3-out” con-
figuration of the cubic Kitaev model.

scattering'#1> and powder pair distribution function'® mea-

surements indicate that the “paraelectric” state of these sys-
tems just above T¢ is far from random and resembles instead
the low-temperature behaviour of the Kitaev model. Hence
we are in the J; > J5 regime of (8), which is sensible given
the strong directional coupling between SOJT distortions ex-
pected for these systems [cf. Fig. 2J. We have shown that
the instability that drives the Pm3m/P4mm transition-and
hence the emergence of a spontaneous polarisation—in these
two compounds need not involve ferroelectric coupling of the
Ti/Nb displacements per se, but may instead take the form of a
local instability associated with steric or screened electrostatic
interactions mediated by the A-site cations. Our goal here is
not so much to explain the ferroelectric response of these sys-

tems, but rather to demonstrate that the combination of two
judiciously-chosen local-order instabilities may in principle
couple to a bulk polar distortion in a manner that is conceptu-
ally similar to the HIF mechanism.

One of the clear challenges that emerges from our study is
the need for a much fuller understanding of the interplay be-
tween global and local symmetry breaking mechanisms. The
conventional Landau description breaks down in attempting
to describe local-order transitions (e.g. at Tx and 7 in our
study) but provides a very natural and appealing explanation
of the global symmetry-breaking process that occurs at 7¢. In
other systems, local-structure transitions have been described
in terms of Higgs transitions of an emergent gauge theory in
an approach that is inherently non-Landau*® Consequently
we suggest that the rationalisation of these two viewpoints is
an appealing area for future theoretical study. In the context
of materials design, the central question raised by our study
is: what particular types of local ordering mechanisms might,
when combined, necessarily couple to polarisation (or ferro-
magnetisation or ferroelasticity. . .)? An ability to answer this
question then informs the targeting of specific bonding motifs
or components with specific local instabilities as an entirely
new approach to functional materials discovery.
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