77 research outputs found

    From Fe3O4/NiO bilayers to NiFe2O4-like thin films through Ni interdiffusion

    Get PDF
    Ferrites with (inverse) spinel structure display a large variety of electronic and magnetic properties, making some of them interesting for potential applications in spintronics. We investigate the thermally induced interdiffusion of Ni2+^{2+} ions out of NiO into Fe3_3O4_4 ultrathin films, resulting in off-stoichiometric nickel ferrite–like thin layers. We synthesized epitaxial Fe3_3O4_4 bilayers on Nb-doped SrTiO3_3(001) substrates by means of reactive molecular beam epitaxy. Subsequently, we performed an annealing cycle comprising three steps at temperatures of 400^\circC, 600^\circC, and 800^\circC under an oxygen background atmosphere. We studied the changes of the chemical and electronic properties as result of each annealing step with help of hard x-ray photoelectron spectroscopy and found a rather homogeneous distribution of Ni and Fe cations throughout the entire film after the overall annealing cycle. For one sample we observed a cationic distribution close to that of the spinel ferrite NiFe2_2O4_4. Further evidence comes from low-energy electron diffraction patterns indicating a spinel-type structure at the surface after annealing. Site- and element-specific hysteresis loops performed by x-ray magnetic circular dichroism uncovered the antiferrimagnetic alignment between the octahedral coordinated Ni2+^{2+} and Fe3+^{3+} ions and the Fe3+^{3+} ion in tetrahedral coordination. We find a quite low coercive field of 0.02 T, indicating a rather low defect concentration within the thin ferrite films

    Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

    Get PDF
    Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence

    Ordnungsvorgaenge in einatomaren Metallschichten auf hochindizierten Metallflaechen

    No full text
    SIGLEAvailable from TIB Hannover: DB 4118 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    OpenTSN: an open-source project for time-sensitive networking system development

    No full text

    Inflammation of the Neck

    No full text

    Computational analysis of the hemodynamics in cerebral arteries related to Moyamoya disease

    No full text

    Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates

    No full text
    Typing of Clostridium perfringens strains by PCR-based determination of toxin genes proved to be a reliable method for diagnosis of enterotoxaemia in various animal species. We report the establishment and validation of three real-time fluorogenic (TaqMan) multiplex PCRs for the detection of C. perfringens alpha-, beta-, beta2-, epsilon-, entero- and iota-toxin genes. The composition of the PCRs was chosen with regard to robustness of the assays and in order to increase sensitivity compared to the conventional simplex PCRs. The combination of probe dyes selected for the real-time assays (FAM/TAMRA, Cy-5/BHQ-2 and VIC/TAMRA) as well as the designation of the chromosome-borne alpha-toxin as internal positive control allowed the creation of highly specific and sensitive, as well as time and cost effective PCRs. One hundred and three strains of C. perfringens isolated in Switzerland derived from clinical or suspected cases of enterotoxaemia in 10 different animal species were tested. The toxin genotypes were in agreement in both the conventional PCRs and the newly designed multiplex PCRs. Furthermore, the real-time PCR carried out as simplex allows to quantitate the copy numbers of plasmid-borne toxin genes in relation to the chromosomally located alpha-toxin gene
    corecore