72 research outputs found

    A eukaryotic specific transmembrane segment is required for tetramerization in AMPA receptors

    Get PDF
    Most fast excitatory synaptic transmission in the nervous system is mediated by glutamate acting through ionotropic glutamate receptors (iGluRs). iGluRs (AMPA, kainate, and NMDA receptor subtypes) are tetrameric assemblies, formed as a dimer of dimers. Still, the mechanism underlying tetramerization-the necessary step for the formation of functional receptors that can be inserted into the plasma membrane-is unknown. All eukaryotic compared to prokaryotic iGluR subunits have an additional transmembrane segment, theM4segment, which positions the physiologically critical C-terminal domain on the cytoplasmic side of the membrane.AMPAreceptor (AMPAR) subunits lacking M4 do not express on the plasma membrane. Here, we show that these constructs are retained in the endoplasmic reticulum, the major cellular compartment mediating protein oligomerization. Using approaches to assay the native oligomeric state of AMPAR subunits, we find that subunits lacking M4 or containing single amino acid substitutions along an "interacting" face of the M4 helix that block surface expression no longer tetramerize in either homomeric or heteromeric assemblies. In contrast, subunit dimerization appears to be largely intact. These experiments define the M4 segment as a unique functional unit in AMPARs that is required for the critical dimer-to-tetramer transition. © 2013 the authors

    Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system

    The current clinically relevant findings on COVID-19 pandemic

    Get PDF
    The emergence of a novel coronavirus and coronavirus disease 2019 (COVID-19) represents a challenge to global healthcare. In the past 20 years, this is the third coronavirus that jumped the species barrier and infected humans. It is highly contagious but associated with low pathogenicity. First identified in Wuhan, China, a city of over 11 million, the disease has since spread to every continent except Antarctica. About 15 to 20 of all cases may be called severe, and it is believed many cases are asymptomatic. The average age of a person with COVID has been reported as 49 years. Worse outcomes are associated with geriatric populations and those with un-derlying diseases such as cardiovascular, respiratory disorders, and/or diabetes. The coronavirus, like other coronaviruses, is highly contagious and has a latency period of about 14 days. Most patients present with fever and a dry cough, but fever may be absent. Differential diagnosis can be challenging since influenza may present with similar symptoms. Chest radiography or computed to-mography may be used to find evidence of secondary pneumonia. Nosocomial infection is of concern, and it has been reported that 3.8 of all cases with COVID-19 in that country involve healthcare workers in China. Most patients have mild disease, and supportive care suffices. A variety of repurposed and investigational drugs are being evaluated. There are currently no antiviral therapies or vaccines, even if many therapies are proposed. Hand hygiene, social distancing, and scientifically sound information are the best strategies at the moment to combat this epidemic. © 2020, Author(s)

    CXCL12 inhibits expression of the NMDA receptor's NR2B subunit through a histone deacetylase-dependent pathway contributing to neuronal survival

    Get PDF
    Homeostatic chemokines, such as CXCL12, can affect neuronal activity by the regulation of inhibitory and excitatory neurotransmission, but the mechanisms involved are still undefined. Our previous studies have shown that CXCL12 protects cortical neurons from excitotoxicity by promoting the function of the gene-repressor protein Rb, which is involved in the recruitment of chromatin modifiers (such as histone deacetylases (HDACs)) to gene promoters. In neurons, Rb controls activity-dependent genes essential to neuronal plasticity and survival, such as the N-methyl--aspartic acid (NMDA) receptor's subunit NR2B, the expression of which in the tetrameric ion channel largely affects calcium signaling by glutamate. In this study, we report that CXCL12 differentially modulates intracellular responses after stimulation of synaptic and extrasynaptic NMDA receptors, by a specific regulation of the NR2B gene that involves HDACs. Our results show that CXCL12 selectively inhibits NR2B expression in vitro and in vivo altering NMDA-induced calcium responses associated with neuronal death, while promoting prosurvival pathways that depend on stimulation of synaptic receptors. Along with previous studies, these findings underline the role of CXCL12/CXCR4 in the regulation of crucial components of glutamatergic transmission. These novel effects of CXCL12 may be involved in the physiological function of the chemokine in both developing and mature brains

    Angiographic Features and Clinical Outcomes of Balloon Uncrossable Lesions during Chronic Total Occlusion Percutaneous Coronary Intervention

    Get PDF
    Background: Balloon uncrossable lesions are defined as lesions that cannot be crossed with a balloon after successful guidewire crossing. Methods: We analyzed the association between balloon uncrossable lesions and procedural outcomes of 8671 chronic total occlusions (CTOs) percutaneous coronary interventions (PCIs) performed between 2012 and 2022 at 41 centers. Results: The prevalence of balloon uncrossable lesions was 9.2%. The mean patient age was 64.2 ± 10 years and 80% were men. Patients with balloon uncrossable lesions were older (67.3 ± 9 vs. 63.9 ± 10, p \u3c 0.001) and more likely to have prior coronary artery bypass graft surgery (40% vs. 25%, p \u3c 0.001) and diabetes mellitus (50% vs. 42%, p \u3c 0.001) compared with patients who had balloon crossable lesions. In-stent restenosis (23% vs. 16%. p \u3c 0.001), moderate/severe calcification (68% vs. 40%, p \u3c 0.001), and moderate/severe proximal vessel tortuosity (36% vs. 25%, p \u3c 0.001) were more common in balloon uncrossable lesions. Procedure time (132 (90, 197) vs. 109 (71, 160) min, p \u3c 0.001) was longer and the air kerma radiation dose (2.55 (1.41, 4.23) vs. 1.97 (1.10, 3.40) min, p \u3c 0.001) was higher in balloon uncrossable lesions, while these lesions displayed lower technical (91% vs. 99%, p \u3c 0.001) and procedural (88% vs. 96%, p \u3c 0.001) success rates and higher major adverse cardiac event (MACE) rates (3.14% vs. 1.49%, p \u3c 0.001). Several techniques were required for balloon uncrossable lesions. Conclusion: In a contemporary, multicenter registry, 9.2% of the successfully crossed CTOs were initially balloon uncrossable. Balloon uncrossable lesions exhibited lower technical and procedural success rates and a higher risk of complications compared with balloon crossable lesions

    dTip60 HAT Activity Controls Synaptic Bouton Expansion at the Drosophila Neuromuscular Junction

    Get PDF
    Background: Histone acetylation of chromatin plays a key role in promoting the dynamic transcriptional responses in neurons that influence the neuroplasticity linked to cognitive ability, yet the specific histone acetyltransferases (HATs) that create such epigenetic marks remain to be elucidated. Methods and Findings: Here we use the Drosophila neuromuscular junction (NMJ) as a well-characterized synapse model to identify HATs that control synaptic remodeling and structure. We show that the HAT dTip60 is concentrated both pre and post-synaptically within the NMJ. Presynaptic targeted reduction of dTip60 HAT activity causes a significant increase in synaptic bouton number that specifically affects type Is boutons. The excess boutons show a suppression of the active zone synaptic function marker bruchpilot, suggesting defects in neurotransmission function. Analysis of microtubule organization within these excess boutons using immunohistochemical staining to the microtubule associated protein futsch reveals a significant increase in the rearrangement of microtubule loop architecture that is required for bouton division. Moreover, a-tubulin acetylation levels of microtubules specifically extending into the terminal synaptic boutons are reduced in response to dTip60 HAT reduction. Conclusions: Our results are the first to demonstrate a causative role for the HAT dTip60 in the control of synaptic plasticity that is achieved, at least in part, via regulation of the synaptic microtubule cytoskeleton. These findings have implication

    High-Pass Filtering of Input Signals by the Ih Current in a Non-Spiking Neuron, the Retinal Rod Bipolar Cell

    Get PDF
    Hyperpolarization–activated cyclic nucleotide–sensitive (HCN) channels mediate the If current in heart and Ih throughout the nervous system. In spiking neurons Ih participates primarily in different forms of rhythmic activity. Little is known, however, about its role in neurons operating with graded potentials as in the retina, where all four channel isoforms are expressed. Intriguing evidence for an involvement of Ih in early visual processing are the side effects reported, in dim light or darkness, by cardiac patients treated with HCN inhibitors. Moreover, electroretinographic recordings indicate that these drugs affect temporal processing in the outer retina. Here we analyzed the functional role of HCN channels in rod bipolar cells (RBCs) of the mouse. Perforated–patch recordings in the dark–adapted slice found that RBCs exhibit Ih, and that this is sensitive to the specific blocker ZD7288. RBC input impedance, explored by sinusoidal frequency–modulated current stimuli (0.1–30 Hz), displays band–pass behavior in the range of Ih activation. Theoretical modeling and pharmacological blockade demonstrate that high–pass filtering of input signals by Ih, in combination with low–pass filtering by passive properties, fully accounts for this frequency–tuning. Correcting for the depolarization introduced by shunting through the pipette–membrane seal, leads to predict that in darkness Ih is tonically active in RBCs and quickens their responses to dim light stimuli. Immunohistochemistry targeting candidate subunit isoforms HCN1–2, in combination with markers of RBCs (PKC) and rod–RBC synaptic contacts (bassoon, mGluR6, Kv1.3), suggests that RBCs express HCN2 on the tip of their dendrites. The functional properties conferred by Ih onto RBCs may contribute to shape the retina's light response and explain the visual side effects of HCN inhibitors

    Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review

    Get PDF
    The authors developed a global chronic total occlusion crossing algorithm following 10 steps: 1) dual angiography; 2) careful angiographic review focusing on proximal cap morphology, occlusion segment, distal vessel quality, and collateral circulation; 3) approaching proximal cap ambiguity using intravascular ultrasound, retrograde, and move-the-cap techniques; 4) approaching poor distal vessel quality using the retrograde approach and bifurcation at the distal cap by use of a dual-lumen catheter and intravascular ultrasound; 5) feasibility of retrograde crossing through grafts and septal and epicardial collateral vessels; 6) antegrade wiring strategies; 7) retrograde approach; 8) changing strategy when failing to achieve progress; 9) considering performing an investment procedure if crossing attempts fail; and 10) stopping when reaching high radiation or contrast dose or in case of long procedural time, occurrence of a serious complication, operator and patient fatigue, or lack of expertise or equipment. This algorithm can improve outcomes and expand discussion, research, and collaboration

    Global Chronic Total Occlusion Crossing Algorithm

    Get PDF
    The authors developed a global chronic total occlusion crossing algorithm following 10 steps: 1) dual angiography; 2) careful angiographic review focusing on proximal cap morphology, occlusion segment, distal vessel quality, and collateral circulation; 3) approaching proximal cap ambiguity using intravascular ultrasound, retrograde, and move-the-cap techniques; 4) approaching poor distal vessel quality using the retrograde approach and bifurcation at the distal cap by use of a dual-lumen catheter and intravascular ultrasound; 5) feasibility of retrograde crossing through grafts and septal and epicardial collateral vessels; 6) antegrade wiring strategies; 7) retrograde approach; 8) changing strategy when failing to achieve progress; 9) considering performing an investment procedure if crossing attempts fail; and 10) stopping when reaching high radiation or contrast dose or in case of long procedural time, occurrence of a serious complication, operator and patient fatigue, or lack of expertise or equipment. This algorithm can improve outcomes and expand discussion, research, and collaboration.info:eu-repo/semantics/publishedVersio
    corecore