89 research outputs found

    Ultrastructural Comparison of Cyanidium caldarium

    Full text link

    Photosynthesis in Chondrus crispus: The contribution of energy spill-over in the regulation of excitonic flux

    Get PDF
    AbstractChondrus crispus is a species of red algae that grows on rocks from the middle intertidal into the subtidal zones of the North Atlantic coasts. As such, it has to cope with strongly variable abiotic conditions. Here we studied the response of the photosynthetic apparatus of this red alga to illumination. We found that, as previously described in the case of the unicellular alga Rhodella violacea (E. Delphin et al., Plant Physiol. 118 (1998) 103–113), a single multi-turnover saturating pulse of light is sufficient to induce a strong quenching of fluorescence. To elucidate the mechanisms underlying this fluorescence quenching, we combined room temperature and 77K fluorescence measurements with absorption spectroscopy to monitor the redox state of the different electron carriers in the chain. In addition, we studied the dependence of these various observables upon the excitation wavelength. This led us to identify energy spill-over from Photosystem II to Photosystem I rather than a qE-type non-photochemical quenching as the major source of fluorescence quenching that develops upon a series of 200ms pulses of saturating light results, in line with the conclusion of Ley and Butler (Biochim. Biophys. Acta 592 (1980) 349–363) from their studies of the unicellular red alga Porphyridium cruentum. In addition, we show that the onset of this spill-over is triggered by the reduction of the plastoquinone pool

    Investigation of photocurrents resulting from a living unicellular algae suspension with quinones over time

    Get PDF
    International audiencePlants, algae, and some bacteria convert solar energy into chemical energy by using photosynthesis. In light of the current energy environment, many research strategies try to benefit from photosynthesis in order to generate usable photobioelectricity. Among all the strategies developed for transferring electrons from the photosynthetic chain to an outer collecting electrode, we recently implemented a method on a preparative scale (high surface electrode) based on a Chlamydomonas reinhardtii green algae suspension in the presence of exogenous quinones as redox mediators. While giving rise to an interesting performance (10-60 mA cm À2) in the course of one hour, this device appears to cause a slow decrease of the recorded photocurrent. In this paper, we wish to analyze and understand this gradual fall in performance in order to limit this issue in future applications. We thus first show that this kind of degradation could be related to over-irradiation conditions or side-effects of quinones depending on experimental conditions. We therefore built an empirical model involving a kinetic quenching induced by incubation with quinones, which is globally consistent with the experimental data provided by fluorescence measurements achieved after dark incubation of algae in the presence of quinones

    Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants

    Get PDF
    International audienceTelomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telo-merase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas rein-hardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. rein-hardtii (TTTTAGGG) n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 39 overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii

    Biogenesis of cytochrome b6 in photosynthetic membranes

    Get PDF
    In chloroplasts, binding of a câ€Č-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of câ€Č-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes

    Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    Get PDF
    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus

    We're in this Together: Sensation of the Host Cell Environment by Endosymbiotic Bacteria

    Get PDF
    Bacteria inhabit diverse environments, including the inside of eukaryotic cells. While a bacterial invader may initially act as a parasite or pathogen, a subsequent mutualistic relationship can emerge in which the endosymbiotic bacteria and their host share metabolites. While the environment of the host cell provides improved stability when compared to an extracellular environment, the endosymbiont population must still cope with changing conditions, including variable nutrient concentrations, the host cell cycle, host developmental programs, and host genetic variation. Furthermore, the eukaryotic host can deploy mechanisms actively preventing a bacterial return to a pathogenic state. Many endosymbionts are likely to use two-component systems (TCSs) to sense their surroundings, and expanded genomic studies of endosymbionts should reveal how TCSs may promote bacterial integration with a host cell. We suggest that studying TCS maintenance or loss may be informative about the evolutionary pathway taken toward endosymbiosis, or even toward endosymbiont-to-organelle conversion.Peer reviewe

    NEW EMBO MEMBER’S REVIEW: State transitions reveal the dynamics and flexibility of the photosynthetic apparatus

    No full text
    The chloroplast-based photosynthetic apparatus of plants and algae associates various redox cofactors and pigments with ∌70 polypeptides to form five major transmembrane protein complexes. Among these are two photosystems that have distinct light absorption properties but work in series to produce reducing equivalents aimed at the fixation of atmospheric carbon. A short term chromatic adaptation known as ‘State transitions’ was discovered thirty years ago that allows photosynthetic organisms to adapt to changes in light quality and intensity which would otherwise compromise the efficiency of photosynthetic energy conversion. A two-decade research effort has finally unraveled the major aspects of the molecular mechanism responsible for State transitions, and their physiological significance has been revisited. This review describes how a—still elusive—regulatory kinase senses the physiological state of the photosynthetic cell and triggers an extensive supramolecular reorganization of the photosynthetic membranes. The resulting picture of the photosynthetic apparatus is that of a highly flexible energy convertor that adapts to the ever-changing intracellular demand for ATP and/or reducing power

    Studies on kinase-controiled state transitions in Photosystem II and b6fb_6 f mutants from Chlamydomonas reinhardtiiChlamydomonas\ reinhardtii which lack quinone-binding proteins

    No full text
    International audienceWe have studied kinase-dependent state transitions in vivo using photosynthetic mutants from the green alga Chlamydomonas reinhardtiiChlamydomonas\ reinhardtii lacking in quinone-binding proteins. The aim of our study was to identify proteins involved in the plastoquinone-dependent activation of the LHC-kinase. Whereas mutants totally devoid of the quinone-binding subunits D1 and D2 of Photosystem II showed unaltered state transitions, mutants lacking the b6fb_6 f complexes were incapable of state transitions. These mutants were blocked in State 1, which is indicative of either the absence of the LHC-kinase responsible for the regulation, or of the loss of a component responsible for the activation of this enzyme. These two hypotheses are discussed in light of (i) the patterns of phosphorylation of the thylakoid membrane proteins observed in the b6fb_6 f mutants and (ii) the characteristics of the kinase activities recovered from their thylakoids
    • 

    corecore