188 research outputs found

    Analysis of stratified and closely spaced jets exhausting into a crossflow

    Get PDF
    Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles

    Aromaticity as a Guiding Concept for Spectroscopic Features and Nonlinear Optical Properties of Porphyrinoids

    Get PDF
    With their versatile molecular topology and aromaticity, porphyrinoid systems combine remarkable chemistry with interesting photophysical properties and nonlinear optical properties. Hence, the field of application of porphyrinoids is very broad ranging from near-infrared dyes to opto-electronic materials. From previous experimental studies, aromaticity emerges as an important concept in determining the photophysical properties and two-photon absorption cross sections of porphyrinoids. Despite a considerable number of studies on porphyrinoids, few investigate the relationship between aromaticity, UV/vis absorption spectra and nonlinear properties. To assess such structure-property relationships, we performed a computational study focusing on a series of Hückel porphyrinoids to: (i) assess their (anti)aromatic character; (ii) determine the fingerprints of aromaticity on the UV/vis spectra; (iii) evaluate the role of aromaticity on the NLO properties. Using an extensive set of aromaticity descriptors based on energetic, magnetic, structural, reactivity and electronic criteria, the aromaticity of [4n+2] π-electron porphyrinoids was evidenced as was the antiaromaticity for [4n] π-electron systems. In agreement with previous studies, the absorption spectra of aromatic systems display more intense B and Q bands in comparison to their antiaromatic homologues. The nature of these absorption bands was analyzed in detail in terms of polarization, intensity, splitting and composition. Finally, quantities such as the average polarizability and its anisotropy were found to be larger in aromatic systems, whereas first and second hyperpolarizability are influenced by the interplay between aromaticity, planarity and molecular symmetry. To conclude, aromaticity dictates the photophysical properties in porphyrinoids, whereas it is not the only factor determining the magnitude of NLO properties

    A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies

    Get PDF
    We have measured differential cross sections for \pp elastic scattering with internal fiber targets in the recirculating beam of the proton synchrotron COSY. Measurements were made continuously during acceleration for projectile kinetic energies between 0.23 and 2.59 GeV in the angular range 30θc.m.9030 \leq \theta_{c.m.} \leq 90 deg. Details of the apparatus and the data analysis are given and the resulting excitation functions and angular distributions presented. The precision of each data point is typically better than 4%, and a relative normalization uncertainty of only 2.5% within an excitation function has been reached. The impact on phase shift analysis as well as upper bounds on possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure

    OGLE-2005-BLG-153: Microlensing Discovery and Characterization of A Very Low Mass Binary

    Get PDF
    The mass function and statistics of binaries provide important diagnostics of the star formation process. Despite this importance, the mass function at low masses remains poorly known due to observational difficulties caused by the faintness of the objects. Here we report the microlensing discovery and characterization of a binary lens composed of very low-mass stars just above the hydrogen-burning limit. From the combined measurements of the Einstein radius and microlens parallax, we measure the masses of the binary components of 0.10±0.01 M0.10\pm 0.01\ M_\odot and 0.09±0.01 M0.09\pm 0.01\ M_\odot. This discovery demonstrates that microlensing will provide a method to measure the mass function of all Galactic populations of very low mass binaries that is independent of the biases caused by the luminosity of the population.Comment: 6 pages, 3 figures, 1 tabl

    OGLE-2005-BLG-018: Characterization of Full Physical and Orbital Parameters of a Gravitational Binary Lens

    Get PDF
    We present the analysis result of a gravitational binary-lensing event OGLE-2005-BLG-018. The light curve of the event is characterized by 2 adjacent strong features and a single weak feature separated from the strong features. The light curve exhibits noticeable deviations from the best-fit model based on standard binary parameters. To explain the deviation, we test models including various higher-order effects of the motions of the observer, source, and lens. From this, we find that it is necessary to account for the orbital motion of the lens in describing the light curve. From modeling of the light curve considering the parallax effect and Keplerian orbital motion, we are able to measure not only the physical parameters but also a complete orbital solution of the lens system. It is found that the event was produced by a binary lens located in the Galactic bulge with a distance 6.7±0.36.7\pm 0.3 kpc from the Earth. The individual lens components with masses 0.9±0.3 M0.9\pm 0.3\ M_\odot and 0.5±0.1 M0.5\pm 0.1\ M_\odot are separated with a semi-major axis of a=2.5±1.0a=2.5 \pm 1.0 AU and orbiting each other with a period P=3.1±1.3P=3.1 \pm 1.3 yr. The event demonstrates that it is possible to extract detailed information about binary lens systems from well-resolved lensing light curves.Comment: 19 pages, 6 figure

    Observation of a Single-Spin Azimuthal Asymmetry in Semi-Inclusive Pion Electro-Production

    Get PDF
    Single-spin asymmetries for semi-inclusive pion production in deep-inelastic scattering have been measured for the first time. A significant target-spin asymmetry of the distribution in the azimuthal angle phi of the pion relative to the lepton scattering plane was observed for pi+ electro-production on a longitudinally polarized hydrogen target. The corresponding analyzing power in the sin(phi) moment of the cross section is 0.022 +/- 0.005 +/- 0.003. This result can be interpreted as the effect of terms in the cross section involving chiral-odd spin distribution functions in combination with a time-reversal-odd fragmentation function that is sensitive to the transverse polarization of the fragmenting quark.Comment: 5 pages of RevTex, 3 ps figures, 2 table

    Measurement of the Spin Asymmetry in the Photoproduction of Pairs of High-pT Hadrons at HERMES

    Get PDF
    We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.Comment: 5 pages (latex), 4 figures (eps

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure

    Measurement of Longitudinal Spin Transfer to Lambda Hyperons in Deep-Inelastic Lepton Scattering

    Get PDF
    Spin transfer in deep-inelastic Lambda electroproduction has been studied with the HERMES detector using the 27.6 GeV polarized positron beam in the HERA storage ring. For an average fractional energy transfer = 0.45, the longitudinal spin transfer from the virtual photon to the Lambda has been extracted. The spin transfer along the Lambda momentum direction is found to be 0.11 +/- 0.17 (stat) +/- 0.03 (sys); similar values are found for other possible choices for the longitudinal spin direction of the Lambda. This result is the most precise value obtained to date from deep-inelastic scattering with charged lepton beams, and is sensitive to polarized up quark fragmentation to hyperon states. The experimental result is found to be in general agreement with various models of the Lambda spin content, and is consistent with the assumption of helicity conservation in the fragmentation process.Comment: 8 pages, 3 figures; new version has an expanded discussion and small format change

    The Flavor Asymmetry of the Light Quark Sea from Semi-inclusive Deep-inelastic Scattering

    Get PDF
    The flavor asymmetry of the light quark sea of the nucleon is determined in the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time from semi-inclusive deep-inelastic scattering. The quantity (dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields of positive and negative pions from unpolarized hydrogen and deuterium targets. The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing an excess of dbar over ubar quarks in the proton.Comment: 7 Pages, 2 figures, RevTeX format; slight revision in text, small change in extraction of dbar-ubar and comparison with a high q2 parameterizatio
    corecore