31 research outputs found

    Propellant-Flow-Actuated Rocket Engine Igniter

    Get PDF
    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0.001 lb/s) and pressure drops on the order of 30 to 50 kilopascal (a few psi). An analytical model has been created and tested in conjunction with a precisely calibrated reference model. The analytical model accurately captures the overall behavior of this innovation. The model is a simple "volume-orifice" concept, with each chamber considered a single temperature and pressure "node" connected to adjacent nodes, or to vent paths through flow control orifices. Mass and energy balances are applied to each node, with gas flow predicted using simple compressible flow equations

    Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Get PDF
    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved in one or more charging chambers to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process

    Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Get PDF
    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process

    NASA Flexible Screen Propellant Management Device (PMD) Demonstration With Cryogenic Liquid

    Get PDF
    While evaluating various options for liquid methane and liquid oxygen propellant management for lunar missions, Innovative Engineering Solutions (IES) conceived the flexible screen device as a potential simple alternative to conventional propellant management devices (PMD). An apparatus was designed and fabricated to test flexible screen devices in liquid nitrogen. After resolution of a number of issues (discussed in detail in the paper), a fine mesh screen (325 by 2300 wires per inch) spring return assembly was successfully tested. No significant degradation in the screen bubble point was observed either due to the screen stretching process or due to cyclic fatigue during testing. An estimated 30 to 50 deflection cycles, and approximately 3 to 5 thermal cycles, were performed on the final screen specimen, prior to and between formally recorded testing. These cycles included some "abusive" pressure cycling, where gas or liquid was driven through the screen at rates that produced differential pressures across the screen of several times the bubble point pressure. No obvious performance degradation or other changes were observed over the duration of testing. In summary, it is felt by the author that these simple tests validated the feasibility of the flexible screen PMD concept for use with cryogenic propellants

    Cryogenic Propellant Management Device: Conceptual Design Study

    Get PDF
    Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space

    CRYOTE (Cryogenic Orbital Testbed) Concept

    Get PDF
    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM

    Cryogenic Orbital Testbed (CRYOTE) Ground Test Article, Final Report

    Get PDF
    Liquid propulsion has been used since Robert Goddard started developing a liquid oxygen (LO2) and gasoline powered rocket and fired it in 1923 (Ref. 1). In the following decades engineers settled on the combination of liquid hydrogen (LH2) and LO2 as the most efficient propellant combination for in-space travel. Due to their low temperatures (LH2 at 20 K and LO2 at 90 K), they require special handling and procedures. General Dynamics began developing LO2 and LH2 upper stages in 1956 in the form of Centaur, these efforts were soon funded by the Department of Defense in conjunction with NASA (beginning in 1958) (Ref. 2). Meanwhile NASA also worked with McDonnell Douglas to develop the SIV-B stage for the Saturn V rocket. In the subsequent years, the engineers were able to push the Centaur to up to 9 hr of orbital lifetime and the SIV-B to up to 6 hr. Due to venting the resultant boil-off from the high heat loads through the foam insulation on the upper stages, both vehicles remained in a settled configuration throughout the flights, thus the two phases of propellant (liquid and vapor) were separated at a known location. The one exception to this were the Titan/Centaur missions, which thanks to the lower boil-off using three layers of multilayer insulation (MLI), were able to coast unsettled for up to 5.25 hr during direct geosynchronous orbit insertion missions. In the years since there has been a continuous effort to extend the life of these upper stages from hours to days or even months

    Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Get PDF
    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing

    Intent to Speed: Cyclical Production, Topicality and the 1950s Hot Rod Movie

    Get PDF
    This essay tracks the emergence, consolidation and dissolution of the short cycle of hot rod movies that was exhibited from 1956 to 1958. The aim is to explore this cycle’s connection to topical issues and show how filmmakers used timely subjects. The essay examines the media frenzy that whirled around the subculture of hot rodding and the sensationalist marketing strategies used to promote the films, which are linked to exhibition in drive-in theatres. There is an extraordinary mismatch between the thrills promised by the sales pitch for the films and the pedestrian action of the films themselves. While showing intent to speed, few examples of the cycle actually delivered on the promise to thrill. Finally, questions of turnover and the speed of production are considered. What draws these areas of interest together is a series of enquiries about what made hot rods and hot rod culture useful to film producers and audiences

    Simple, Robust Cryogenic Propellant Depot for Near Term Applications

    No full text
    The ability to refuel cryogenic propulsion stages on-orbit provides an innovative paradigm shift for space transportation supporting National Aeronautics and Space Administration s (NASA) Exploration program as well as deep space robotic, national security and commercial missions. Refueling enables large beyond low Earth orbit (LEO) missions without requiring super heavy lift vehicles that must continuously grow to support increasing mission demands as America s exploration transitions from early Lagrange point missions to near Earth objects (NEO), the lunar surface and eventually Mars. Earth-to-orbit launch can be optimized to provide competitive, cost-effective solutions that allow sustained exploration. This paper describes an experimental platform developed to demonstrate the major technologies required for fuel depot technology. This test bed is capable of transferring residual liquid hydrogen (LH2) or liquid oxygen (LO2) from a Centaur upper stage, and storage in a secondary tank for up to one year on-orbit. A dedicated, flight heritage spacecraft bus is attached to an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring supporting experiments and data collection. This platform can be deployed as early as Q1 2013. The propellant depot design described in this paper can be deployed affordably this decade supporting missions to Earth-Moon Lagrange points and lunar fly by. The same depot concept can be scaled up to support more demanding missions and launch capabilities. The enabling depot design features, technologies and concept of operations are described
    corecore