147 research outputs found

    The Individual Inclination to an Occupation and its Neuronal Correlate

    Get PDF
    Many young people decide their professional direction during adolescence. This often coincides with vulnerable phases of puberty-related maturation that is usually accompanied by difficulties in assessing one’s personal inclinations and competences. Several psychological tests have been established among teachers and career advisers serving as a tool for professional coaching the teenagers’ competences and preferences. Many tools are based on the “Theory of Vocational Personalities in Work Environment” developed by John L. Holland since the 1950s, comprising the “RIASEC” model. Today, this theory provides the basis for tests which are used and refined all over the world. Professor Stangl’s online assessable “Situational Interest Test” (SIT) is based on Holland’s theory. By means of 30 short assessments the SIT questionnaire assesses the participant’s personality traits: Realistic (“Doers”), Investigative (“Thinkers”), Artistic (“Creators”), Social (“Helpers”), Enterprising (“Persuaders”), and Conventional (“Organizers”). Modern Magnetic Resonance Imaging (MRI) is able to discriminate between the brain’s compartments as Gray and White Matter using Voxel-Based Morphometry (VBM). This tool allows to reshape and to normalize human brains’ structure to statistically examining individual brains. Up to now findings from 20 years of functional MRI gave detailed insights in correlations between brain structures and mental functions. Hence, knowledge on structural base of cognitive or behavioral patterns is available as a brain’s map for assigning anatomical regions to their functions. The present study demonstrates that there are statistically relevant correlations between all dimensions of Holland’s RIASEC theory by assessing individual professional inclinations and the neuronal structures of the brain. Results show correspondence between the personality traits assigned by the RIASEC test and the functions of significant structural alterations in distinct brain areas well-known from literature

    Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age‐related muscle dysfunction

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154339/1/fsb2fj030395fje-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154339/2/fsb2fj030395fje.pd

    Effect of lifelong overexpression of HSP70 in skeletal muscle on age‐related oxidative stress and adaptation after nondamaging contractile activity

    Get PDF
    [EN] Skeletal muscle aging is characterized by atrophy, a deficit in specific force generation, increased susceptibility to injury, and incomplete recovery after severe injury. The ability of muscles of old mice to produce heat shock proteins (HSPs) in response to stress is severely diminished. Studies in our laboratory using HSP70 overexpressor mice demonstrated that lifelong overexpression of HSP70 in skeletal muscle provided protection against damage and facilitated successful recovery after damage in muscles of old mice. The mechanisms by which HSP70 provides this protection are unclear. Aging is associated with the accumulation of oxidation products, and it has been proposed that this may play a major role in age-related muscle dysfunction. Muscles of old wild-type (WT) mice demonstrated increased lipid peroxidation, decreased glutathione content, increased catalase and superoxide dismutase (SOD) activities, and an inability to activate nuclear factor (NF)- B after contractions in comparison with adult WT mice. In contrast, levels of lipid peroxidation, glutathione content, and the activities of catalase and SOD in muscles of old HSP70 overexpressor mice were similar to adult mice and these muscles also maintained the ability to activate NF- B after contractions. These data provide an explanation for the preservation of muscle function in old HSP70 overexpressor mice.—Broome, C. S., Kayani, A. C., Palomero, J., Dillmann, W. H., Mestril, R., Jackson, M. J., McArdle, A. Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity

    Cerebral and Extracranial Neurodegeneration are Strongly Coupled in Parkinson’s Disease

    Get PDF
    In idiopathic Parkinson’s disease (PD), a generalized Lewy body type-degeneration in the brain as well as extracranial organs was identified. It is unclear, whether cerebral and extracranial Lewy body type-degeneration in PD are coupled or not. To address this question, cerebral [123I]FP-CIT SPECT – to quantify cerebral nigrostriatal dopaminergic degeneration – and myocardial [123I]MIBG scintigraphy – to quantify extracranial myocardial sympathetic degeneration – were performed in 95 PD patients and 20 healthy controls. At each Hoehn and Yahr stage separately, myocardial MIBG uptake correlated significantly with striatal FP-CIT uptake. No such correlation was found in the controls. Cerebral and extracranial Lewy body type-degeneration in PD do not develop independently from each other but develop in a strongly coupled manner. Obviously cerebral and extracranial changes are driven by at least similar pathomechanisms. Our findings in controls contradict a physiological correlation between nigrostriatal dopaminergic and myocardial sympathetic function

    On least-order flow representations for aerodynamics and aeroacoustics

    Get PDF
    We propose a generalization of proper orthogonal decomposition (POD) for optimal flow resolution of linearly related observables. This Galerkin expansion, termed ‘observable inferred decomposition' (OID), addresses a need in aerodynamic and aeroacoustic applications by identifying the modes contributing most to these observables. Thus, OID constitutes a building block for physical understanding, least-biased conditional sampling, state estimation and control design. From a continuum of OID versions, two variants are tailored for purposes of observer and control design, respectively. Firstly, the most probable flow state consistent with the observable is constructed by a ‘least-residual' variant. This version constitutes a simple, easily generalizable reconstruction of the most probable hydrodynamic state to preprocess efficient observer design. Secondly, the ‘least-energetic' variant identifies modes with the largest gain for the observable. This version is a building block for Lyapunov control design. The efficient dimension reduction of OID as compared to POD is demonstrated for several shear flows. In particular, three aerodynamic and aeroacoustic goal functionals are studied: (i)lift and drag fluctuation of a two-dimensional cylinder wake flow; (ii)aeroacoustic density fluctuations measured by a sensor array and emitted from a two-dimensional compressible mixing layer; and (iii)aeroacoustic pressure monitored by a sensor array and emitted from a three-dimensional compressible jet. The most ‘drag-related', ‘lift-related' and ‘loud' structures are distilled and interpreted in terms of known physical processe

    Role of Myotonic Dystrophy Protein Kinase (DMPK) in Glucose Homeostasis and Muscle Insulin Action

    Get PDF
    Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes

    Neuronal Na+ Channels Are Integral Components of Pro-Arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-Adrenergic Stimulation

    Get PDF
    SummaryAlthough triggered arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are often caused by increased levels of circulating catecholamines, the mechanistic link between β-adrenergic receptor (AR) stimulation and the subcellular/molecular arrhythmogenic trigger(s) is unclear. Here, we systematically investigated the subcellular and molecular consequences of β-AR stimulation in the promotion of catecholamine-induced cardiac arrhythmias. Using mouse models of cardiac calsequestrin-associated CPVT, we demonstrate that a subpopulation of Na+ channels, mainly the neuronal Na+ channels (nNav), colocalize with ryanodine receptor 2 (RyR2) and Na+/Ca2+ exchanger (NCX) and are a part of the β-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves β-AR–mediated activation of CAMKII, subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. Taken together, these data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and of Nav1.6 in particular can serve as a potential antiarrhythmic therapy

    Profiling quality of care for patients with chronic headache in three different German hospitals – a case study

    Get PDF
    BACKGROUND: Legal requirements for quality assurance in German rehabilitation hospitals include comparisons of providers. Objective is to describe and to compare outcome quality of care offered by three hospitals providing in-patient rehabilitative treatment exemplified for patients with chronic headache. METHODS: We performed a prospective three center observational study on patients suffering from chronic headache. Patients underwent interventions commonly used according to internal guidelines of the hospitals. Measurements were taken at three points in time (at admission, at discharge and 6 months after discharge). Indicators of outcome quality included pain intensity and frequency of pain, functional ability, depression, quality of life and health related behavior. Analyses of differences amongst the hospitals were adjusted by covariates due to case-mix situation. RESULTS: 306 patients from 3 hospitals were included in statistical analysis. Amongst the hospitals, patients differed significantly in age, education, diagnostic subgroups, beliefs, and with respect to some pain-related baseline values (covariates). Patients in all three hospitals benefited from intervention to a clinically relevant degree. At discharge from hospital, outcome quality differed significantly after adjustment according to case-mix only in terms of patients' global assessment of treatment results. Six months after discharge, the only detectable significant differences were for secondary outcomes like improved coping with stress or increased use of self-help. The profiles for satisfaction with the hospital stay showed clear differences amongst patients. CONCLUSION: The results of this case study do not suggest a definite overall ranking of the three hospitals that were compared, but outcome profiles offer a multilayer platform of reliable information which might facilitate decision making
    • …
    corecore