41 research outputs found

    Ising model on 3D random lattices: A Monte Carlo study

    Full text link
    We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices with up to 128,000 approx. 503 sites which are linked together according to the Voronoi/Delaunay prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting techniques and finite-size scaling analyses we investigate the critical properties of the model in the close vicinity of the phase transition point. Our random lattice data provide strong evidence that, for the available system sizes, the resulting effective critical exponents are indistinguishable from recent high-precision estimates obtained in Monte Carlo studies of the Ising model and \phi^4 field theory on three-dimensional regular cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure

    Prioritizing global land protection for population persistence can double the efficiency of habitat protection for reducing mammal extinction risk

    Get PDF
    Halting the alarming rate of species extinction, driven primarily by habitat destruction, motivated the international community to adopt the Global Biodiversity Framework (2022) and its targets aimed at reversing habitat and species loss. Because of urgency and resource constraints, a key challenge is meeting targets effectively and efficiently. Here we conduct a global prioritization linking 70,492 unique population maps and life history characteristics for 861 threatened terrestrial mammal species. Incorporating individual population data to identify priority areas for conservation nearly doubled the likely long-term persistence of species for the same amount of land compared with a typical approach based on species distributions alone. We map and rank global mammal persistence priority areas and assess how well the current protected area (PA) system captures these important regions. Our results offer a clearer, quantifiable link between conservation actions and global extinction risk than previously possible at a global scale

    A review of diagnostic and functional imaging in headache

    Get PDF
    The neuroimaging of headache patients has revolutionised our understanding of the pathophysiology of primary headaches and provided unique insights into these syndromes. Modern imaging studies point, together with the clinical picture, towards a central triggering cause. The early functional imaging work using positron emission tomography shed light on the genesis of some syndromes, and has recently been refined, implying that the observed activation in migraine (brainstem) and in several trigeminal-autonomic headaches (hypothalamic grey) is involved in the pain process in either a permissive or triggering manner rather than simply as a response to first-division nociception per se. Using the advanced method of voxel-based morphometry, it has been suggested that there is a correlation between the brain area activated specifically in acute cluster headache — the posterior hypothalamic grey matter — and an increase in grey matter in the same region. No structural changes have been found for migraine and medication overuse headache, whereas patients with chronic tension-type headache demonstrated a significant grey matter decrease in regions known to be involved in pain processing. Modern neuroimaging thus clearly suggests that most primary headache syndromes are predominantly driven from the brain, activating the trigeminovascular reflex and needing therapeutics that act on both sides: centrally and peripherally

    Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts

    No full text
    In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high-resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our model accounts for biological, ecological and environmental processes, as well as spatial variation in water quality and the cumulative effects of coral diseases, bleaching, outbreaks of crown-of-thorns starfish (Acanthaster cf. solaris), and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and 2017 over a total reef area of 14,780 km2 , predicting a mean annual coral loss of -0.67%/year mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral growth rate was the highest for outer shelf coral communities characterized by digitate and tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface temperature, and the lowest for inner-shelf communities exposed to reduced water quality. We show that coral resilience (defined as the net effect of resistance and recovery following disturbance) was negatively related to the frequency of river plume conditions, and to reef accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no-take marine protected areas, however this difference was mostly driven by the effect of water quality. Our model provides a new validated, spatially explicit platform for identifying the reefs that face the greatest risk of biodiversity loss, and those that have the highest chances to persist under increasing disturbance regimes.Camille Mellin, Samuel Matthews, Kenneth R.N. Anthony, Stuart C. Brown, M. Julian Caley, Kerryn A. Johns, Kate Osborne, Marjetta Puotinen, Angus Thompson, Nicholas H. Wolff, Damien A. Fordham, M. Aaron MacNei
    corecore