21 research outputs found

    Cancer incidence in type 2 diabetes patients - first results from a feasibility study of the D2C cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large prospective study in patients with type 2 diabetes (T2D), the German D2C cohort, is presently being enumerated to investigate risk factors of incident cancer in diabetic patients.</p> <p>Study setting</p> <p>A disease management program was offered, on a voluntary basis, to all T2D patients who were members of a statutory health insurance fund in Germany. This first feasibility report uses data from 26.742 T2D patients, who were 40 to 79 years old, resided in the Muenster District, and who were enrolled between June 2003 and July 2008. Cancer cases were identified through the regional Cancer Registry.</p> <p>Methods</p> <p>Invasive cancer cases were identified using probabilistic record linkage procedures and pseudonymised personal identifiers. Censoring date was December 31, 2008. We included only first cancers, leaving 12.650 male and 14.092 female T2D with a total of 88.778 person-years (py). We computed standardised incidence ratios (SIR) for external comparisons and we employed Cox regression models and hazard ratios (HR) within the cohort.</p> <p>Results</p> <p>We identified 759 first cancers among male T2D patients (18.7 per 1,000 py) and 605 among females (12.7 per 1,000 py). The risk of any incident cancer in T2D was raised (SIR = 1.14; 95% confidence interval [1.10 - 1.21]), in particular for cancer of the liver (SIR = 1.94 [1.15 - 2.94]) and pancreas (SIR = 1.45 [1.07-1.92]). SIRs decreased markedly with time after T2D diagnosis. In Cox models, adjusting for diabetes duration, body mass index and sex, insulin therapy was related to higher cancer risk (HR = 1.25 [1.17 - 1.33]). No effect was seen for metformin.</p> <p>Discussion</p> <p>Our study demonstrates feasibility of record linkage between DMP and cancer registries. These first cohort results confirm previous reports. It is envisaged to enhance this cohort by inclusion of further regions of the state, expansion of the follow-up times, and collection of a more detailed medication history.</p

    Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

    Get PDF
    We present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76×106 tritium β-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E0=18.57  keV. We consider the 3ν+1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m24≲1600  eV2 and active-to-sterile mixing |Ue4|2≳6×10−3. As no sterile-neutrino signal was observed, we provide improved exclusion contours on m24 and |Ue4|2 at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Δm241 solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Δm241 are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Δm241 through a robust spectral shape analysis

    New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs

    Full text link
    We report on the direct cosmic relic neutrino background search from the first two science runs of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11) at a 90% (95%) confidence level. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint accounting for relic neutrino captures in the Tritium source reveals no significant overdensity. This work improves the results obtained by the previous kinematic neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by relying on updated operational conditions.Comment: 7 pages, 7 figure

    New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs

    Get PDF
    We report on the direct search for cosmic relic neutrinos using data acquired during the first two science campaigns of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the end point at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity ratio of η < 9.7 × 1010^{10}/α (1.1 × 1011^{11}/α) at a 90% (95%) confidence level with α = 1 (0.5) for Majorana (Dirac) neutrinos. A fit of the integrated electron spectrum over a narrow interval around the end point accounting for relic neutrino captures in the tritium source reveals no significant overdensity. This work improves the results obtained by the previous neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to η < 1×1010^{10}/α at 90% confidence level, by relying on updated operational conditions

    KATRIN: status and prospects for the neutrino mass and beyond

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to measure a high-precision integral spectrum of the endpoint region of T2_{2} β decay, with the primary goal of probing the absolute mass scale of the neutrino. After a first tritium commissioning campaign in 2018, the experiment has been regularly running since 2019, and in its first two measurement campaigns has already achieved a sub-eV sensitivity. After 1000 days of data-taking, KATRIN\u27s design sensitivity is 0.2 eV at the 90% confidence level. In this white paper we describe the current status of KATRIN; explore prospects for measuring the neutrino mass and other physics observables, including sterile neutrinos and other beyond-Standard-Model hypotheses; and discuss research-and-development projects that may further improve the KATRIN sensitivity

    New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs

    No full text
    We report on the direct cosmic relic neutrino background search from the first two science runs of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11) at a 90% (95%) confidence level. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint accounting for relic neutrino captures in the Tritium source reveals no significant overdensity. This work improves the results obtained by the previous kinematic neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by relying on updated operational conditions

    New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs

    No full text
    We report on the direct cosmic relic neutrino background search from the first two science runs of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11) at a 90% (95%) confidence level. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint accounting for relic neutrino captures in the Tritium source reveals no significant overdensity. This work improves the results obtained by the previous kinematic neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by relying on updated operational conditions

    New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs

    Get PDF
    We report on the direct cosmic relic neutrino background search from the first two science runs of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11) at a 90% (95%) confidence level. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint accounting for relic neutrino captures in the Tritium source reveals no significant overdensity. This work improves the results obtained by the previous kinematic neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by relying on updated operational conditions

    Search for Lorentz-Invariance Violation with the first KATRIN data

    No full text
    Some extensions of the Standard Model of Particle Physics allow for Lorentz invariance and Charge-Parity-Time (CPT)-invariance violations. In the neutrino sector strong constraints have been set by neutrino-oscillation and time-of-flight experiments. However, some Lorentz-invariance-violating parameters are not accessible via these probes. In this work, we focus on the parameters (aof(3))00(a_{\text{of}}^{(3)})_{00}, (aof(3))10(a_{\text{of}}^{(3)})_{10} and (aof(3))11(a_{\text{of}}^{(3)})_{11} which would manifest themselves in a non-isotropic beta-decaying source as a sidereal oscillation and an overall shift of the spectral endpoint. Based on the data of the first scientific run of the KATRIN experiment, we set the first limit on (aof(3))11\left|(a_{\text{of}}^{(3)})_{11}\right| of <3.7106< 3.7\cdot10^{-6} GeV at 90% confidence level. Moreover, we derive new constraints on (aof(3))00(a_{\text{of}}^{(3)})_{00} and (aof(3))10(a_{\text{of}}^{(3)})_{10}

    Search for Lorentz-Invariance Violation with the first KATRIN data

    No full text
    Some extensions of the Standard Model of Particle Physics allow for Lorentz invariance and Charge-Parity-Time (CPT)-invariance violations. In the neutrino sector strong constraints have been set by neutrino-oscillation and time-of-flight experiments. However, some Lorentz-invariance-violating parameters are not accessible via these probes. In this work, we focus on the parameters (aof(3))00(a_{\text{of}}^{(3)})_{00}, (aof(3))10(a_{\text{of}}^{(3)})_{10} and (aof(3))11(a_{\text{of}}^{(3)})_{11} which would manifest themselves in a non-isotropic beta-decaying source as a sidereal oscillation and an overall shift of the spectral endpoint. Based on the data of the first scientific run of the KATRIN experiment, we set the first limit on (aof(3))11\left|(a_{\text{of}}^{(3)})_{11}\right| of <3.7106< 3.7\cdot10^{-6} GeV at 90% confidence level. Moreover, we derive new constraints on (aof(3))00(a_{\text{of}}^{(3)})_{00} and (aof(3))10(a_{\text{of}}^{(3)})_{10}
    corecore