31 research outputs found

    Modelling Hurricane Exposure and Wind Speed on a Mesoclimate Scale: A Case Study from Cusuco NP, Honduras

    Get PDF
    High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS's were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%

    Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems

    Get PDF
    Research focusing on assemblages of vascular epiphytes in the Amazon are scarce. This is especially true for Amazonian floodplain forests, for which only two previous studies have been published. We compared composition, richness and structure of epiphyte assemblages in white-water and black-water floodplains (várzea and igapó) in Central Amazonia in order to close knowledge gaps concerning the distribution and richness of epiphytes. We established sixteen 25x25 m plots in each forest type, and counted and identified all species of vascular epiphytes occurring on trees with a diameter at breast height (DBH) ≥10 cm. We observed a clear distinction in epiphytic species composition (r2=0.83, p=0.001) and diversity (t=3.24, P=0.003) between the two environments, with 61.5 % of species being restricted to várzea, 22.9 % restricted to igapó and only 15.6 % common to both ecosystems. The floodplains were also structurally different for the most abundant species and those with the highest Epiphytic Importance Value (IVe). The diversity of trees did not influence the epiphyte diversity in either ecosystem. The forests were found to differ in the composition, diversity and structure of their epiphytic assemblages, which must be taken into account when designing conservation action plans for these ecosystems and for their vascular epiphytes

    A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador

    Get PDF
    We present a first comparison of patterns of alpha and beta diversity of ferns, mosses, liverworts and macrolichens in neotropical montane rainforests, and explore the question whether specific taxa may be used as surrogates for others. In three localities in southern Ecuador, we surveyed terrestrial and epiphytic species assemblages in ridge and slope forests in 28 plots of 400 m² each. The epiphytic habitat was significantly richer in ferns, liverworts, and macrolichens than the terrestrial habitat; mosses, however, were primarily terrestrial. Alpha diversity of ferns and of liverworts was congruent in both habitats. Mosses were similar to ferns and liverworts only in the epiphytic habitat. Macrolichens did not share patterns of alpha diversity with any other group. Beta diversity of ferns, mosses and liverworts (lichens excluded due to low species richness) was similar in the terrestrial habitat, but not in the epiphytic habitat. Our results demonstrate that patterns of alpha diversity of the studied taxa cannot be used to predict patterns of beta diversity. Moreover, diversity patterns observed in epiphytes are different from terrestrial plants. We noted a general coincidence in species patterns of liverworts and ferns. Diversity patterns of macrolichens, in contrast, were completely independent from any other taxonomic group studied
    corecore