39,316 research outputs found

    Detecting planets in protoplanetary disks: A prospective study

    Get PDF
    We investigate the possibility to find evidence for planets in circumstellar disks by infrared and submillimeter interferometry. We present simulations of a circumstellar disk around a solar-type star with an embedded planet of 1 Jupiter mass. The three-dimensional (3D) density structure of the disk results from hydrodynamical simulations. On the basis of 3D radiative transfer simulations, images of this system were calculated. The intensity maps provide the basis for the simulation of the interferometers VLTI (equipped with the mid-infrared instrument MIDI) and ALMA. While MIDI/VLTI will not provide the possibility to distinguish between disks with or without a gap on the basis of visibility measurements, ALMA will provide the necessary basis for a direct gap detection.Comment: 5 page

    Justifications in Constraint Handling Rules for Logical Retraction in Dynamic Algorithms

    Full text link
    We present a straightforward source-to-source transformation that introduces justifications for user-defined constraints into the CHR programming language. Then a scheme of two rules suffices to allow for logical retraction (deletion, removal) of constraints during computation. Without the need to recompute from scratch, these rules remove not only the constraint but also undo all consequences of the rule applications that involved the constraint. We prove a confluence result concerning the rule scheme and show its correctness. When algorithms are written in CHR, constraints represent both data and operations. CHR is already incremental by nature, i.e. constraints can be added at runtime. Logical retraction adds decrementality. Hence any algorithm written in CHR with justifications will become fully dynamic. Operations can be undone and data can be removed at any point in the computation without compromising the correctness of the result. We present two classical examples of dynamic algorithms, written in our prototype implementation of CHR with justifications that is available online: maintaining the minimum of a changing set of numbers and shortest paths in a graph whose edges change.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Passenger ride quality response to an airborne simulator environment

    Get PDF
    The present study was done aboard a special aircraft able to effect translations through the center of gravity with a minimum of pitch and roll. The aircraft was driven through controlled motions by an on-board analog computer. The input signal was selectively filtered Gaussian noise whose power spectra approximated that of natural turbulence. This input, combined with the maneuvering capabilities of this aircraft, resulted in an extremely realistic simulation of turbulent flight. The test flights also included varying bank angles during turns. Subjects were chosen from among NASA Flight Research Center personnel. They were all volunteers, were given physical examinations, and were queried about their attitudes toward flying before final selection. In profile, they were representative of the general flying public. Data from this study include (1) a basis for comparison with previous commercial flights, that is, motion dominated by vertical acceleration, (2) extension to motion dominated by lateral acceleration, and (3) evaluation of various bank angles

    Observability of characteristic binary-induced structures in circumbinary disks

    Full text link
    Context: A substantial fraction of protoplanetary disks forms around stellar binaries. The binary system generates a time-dependent non-axisymmetric gravitational potential, inducing strong tidal forces on the circumbinary disk. This leads to a change in basic physical properties of the circumbinary disk, which should in turn result in unique structures that are potentially observable with the current generation of instruments. Aims: The goal of this study is to identify these characteristic structures, to constrain the physical conditions that cause them, and to evaluate the feasibility to observe them in circumbinary disks. Methods: To achieve this, at first two-dimensional hydrodynamic simulations are performed. The resulting density distributions are post-processed with a 3D radiative transfer code to generate re-emission and scattered light maps. Based on these, we study the influence of various parameters, such as the mass of the stellar components, the mass of the disk and the binary separation on observable features in circumbinary disks. Results: We find that the Atacama Large (sub-)Millimetre Array (ALMA) as well as the European Extremely Large Telescope (E-ELT) are capable of tracing asymmetries in the inner region of circumbinary disks which are affected most by the binary-disk interaction. Observations at submillimetre/millimetre wavelengths will allow the detection of the density waves at the inner rim of the disk and the inner cavity. With the E-ELT one can partially resolve the innermost parts of the disk in the infrared wavelength range, including the disk's rim, accretion arms and potentially the expected circumstellar disks around each of the binary components

    The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    Get PDF
    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure

    Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm1^{-1} from a metallic spintronic emitter

    Get PDF
    To explore the capabilities of metallic spintronic thin-film stacks as a source of intense and broadband terahertz electromagnetic fields, we excite a W/CoFeB/Pt trilayer on a large-area glass substrate (diameter of 7.5 cm) by a femtosecond laser pulse (energy 5.5 mJ, duration 40 fs, wavelength 800 nm). After focusing, the emitted terahertz pulse is measured to have a duration of 230 fs, a peak field of 300 kV cm1^{-1} and an energy of 5 nJ. In particular, the waveform exhibits a gapless spectrum extending from 1 to 10 THz at 10% of amplitude maximum, thereby facilitating nonlinear control over matter in this difficult-to-reach frequency range and on the sub-picosecond time scale.Comment: 7 pages, 4 figure
    corecore