16 research outputs found

    Measurement of the neutron magnetic form factor from inclusive quasielastic scattering of polarized electrons from polarized 3He

    Get PDF
    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3He target. The neutron magnetic form factor GMn has been extracted from the measured asymmetry based on recent PWIA calculations using spin-dependent spectral functions. Our determination of GMn at Q2=0.19 (GeV/c)2 agrees with the dipole parametrization. This experiment represents the first measurement of the neutron magnetic form factor using spin-dependent electron scattering

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Transverse-Longitudinal Asymmetry in the Quasielastic 3He→(e→, e′) Reaction

    Get PDF
    The transverse-longitudinal asymmetry ATL′ in 3He→(e→, e′) quasielastic scattering at momentum transfer Q2=0.14 (GeV/c)^2 has been measured to be 1.52 ± 0.55(stat) ± 0.15(syst)%. The plane wave impulse approximation (PWIA) prediction for this measurement ranges from 2.1% to 2.9%, where the variation is due to uncertainty in the initial state wave function, nucleon form factors, and off-shell prescription. The data may suggest a suppression with respect to the PWIA, which has also been observed for the unpolarized longitudinal response function

    Diquark correlations in hadron physics : origin, impact and evidence

    No full text
    The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the proton’s electromagnetic form factors; and phenomenology suggests that diquark correlations might be critical to the formation of exotic tetra- and penta-quark hadrons. A broad spectrum of such information is evaluated herein, with a view to consolidating the facts and therefrom moving toward a coherent, unified picture of hadron structure and the role that diquark correlations might play.peerReviewe

    Diquark correlations in hadron physics: Origin, impact and evidence

    No full text
    The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the proton's electromagnetic form factors; and phenomenology suggests that diquark correlations might be critical to the formation of exotic tetra- and penta-quark hadrons. A broad spectrum of such information is evaluated herein, with a view to consolidating the facts and there from moving toward a coherent, unified picture of hadron structure and the role that diquark correlations might play. (C) 2020 Published by Elsevier B.V

    Polarization Transfer Observables in Elastic Electron Proton Scattering at Q2=Q^2 = 2.5, 5.2, 6.8, and 8.5 GeV2^2

    Get PDF
    International audienceBackground: Interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio GEp/GMp of the proton's electric and magnetic form factors for momentum transfers Q2≳1 GeV2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique. Purpose: The GEp-III and GEp-2γ experiments were carried out in Jefferson Laboratory's (JLab's) Hall C from 2007 to 2008, to extend the knowledge of GEp/GMp to the highest practically achievable Q2 given the maximum beam energy of 6 GeV and to search for effects beyond the Born approximation in polarization transfer observables of elastic e⃗p scattering. This article provides an expanded description of the common experimental apparatus and data analysis procedures, and reports the results of a final reanalysis of the data from both experiments, including the previously unpublished results of the full-acceptance dataset of the GEp-2γ experiment. Methods: Polarization transfer observables in elastic e⃗p→ep⃗ scattering were measured at central Q2 values of 2.5, 5.2, 6.8, and 8.54 GeV2. At Q2=2.5GeV2, data were obtained for central values of the virtual photon polarization parameter ε of 0.149, 0.632, and 0.783. The Hall C High Momentum Spectrometer detected and measured the polarization of protons recoiling elastically from collisions of JLab's polarized electron beam with a liquid hydrogen target. A large-acceptance electromagnetic calorimeter detected the elastically scattered electrons in coincidence to suppress inelastic backgrounds. Results: The final GEp-III data are largely unchanged relative to the originally published results. The statistical uncertainties of the final GEp-2γ data are significantly reduced at ε=0.632 and 0.783 relative to the original publication. Conclusions: The final GEp-III results show that the decrease with Q2 of GEp/GMp continues to Q2=8.5GeV2, but at a slowing rate relative to the approximately linear decrease observed in earlier Hall A measurements. At Q2=8.5GeV2, GEp/GMp remains positive but is consistent with zero. At Q2=2.5GeV2, GEp/GMp derived from the polarization component ratio R∝Pt/Pℓ shows no statistically significant ε dependence, as expected in the Born approximation. On the other hand, the ratio Pℓ/PℓBorn of the longitudinal polarization transfer component to its Born value shows an enhancement of roughly 1.7% at ε=0.783 relative to ε=0.149, with ≈2.2σ significance based on the total uncertainty, implying a similar effect in the transverse component Pt that cancels in the ratio R

    High-resolution hypernuclear spectroscopy at Jefferson Lab, Hall A

    No full text
    International audienceThe experiment E94-107 in Hall A at Jefferson Lab started a systematic study of high-resolution hypernuclear spectroscopy in the 0p-shell region of nuclei such as the hypernuclei produced in electroproduction on Be9,C12, and O16 targets. In order to increase counting rates and provide unambiguous kaon identification, two superconducting septum magnets and a ring-imaging Cherenkov detector were added to the Hall A standard equipment. The high-quality beam, the good spectrometers, and the new experimental devices allowed us to obtain very good results. For the first time, measurable strength with sub-MeV energy resolution was observed for the core-excited states of BΛ12. A high-quality NΛ16 hypernuclear spectrum was likewise obtained. A first measurement of the Λ binding energy for NΛ16, calibrated against the elementary reaction on hydrogen, was obtained with high precision, 13.76±0.16 MeV. Similarly, the first LiΛ9 hypernuclear spectrum shows general agreement with theory (distorted-wave impulse approximation with the SLA and BS3 electroproduction models and shell-model wave functions). Some disagreement exists with respect to the relative strength of the states making up the first multiplet. A Λ separation energy of 8.36 MeV was obtained, in agreement with previous results. It has been shown that the electroproduction of hypernuclei can provide information complementary to that obtained with hadronic probes and the γ-ray spectroscopy technique

    Technical Supplement to "Polarization Transfer Observables in Elastic Electron-Proton Scattering at Q2^2 = 2.5, 5.2, 6.8, and 8.5 GeV2^2"

    No full text
    International audienceThe GEp-III and GEp-2 γ experiments, carried out in Jefferson Lab’s Hall C from 2007–2008, consisted of measurements of polarization transfer in elastic electron–proton scattering at momentum transfers of Q2=2.5,5.2,6.8, and 8.54 GeV 2 . These measurements were carried out to improve knowledge of the proton electromagnetic form factor ratio R=μpGEp∕GMp at large values of Q2 and to search for effects beyond the Born approximation in polarization transfer observables at Q2=2.5GeV2 . The final results of both experiments were reported in a recent archival publication. A full reanalysis of the data from both experiments was carried out in order to reduce the systematic and, for the GEp-2 γ experiment, statistical uncertainties. This technical note provides additional details of the final analysis omitted from the main publication, including the final evaluation of the systematic uncertainties

    GEp/GMpG_{E_p}/G_{M_p} ratio by polarization transfer in epep\vec{e}p\rightarrow e\vec{p}

    No full text
    The ratio of the proton's elastic electromagnetic form factors was obtained by measuring the transverse and longitudinal polarizations of recoiling protons from the elastic scattering of polarized electrons with unpolarized protons. The ratio of the electric to magnetic form factor is proportional to the ratio of the transverse to longitudinal recoil polarizations. The ratio was measured over a range of four-momentum transfer squared between 0.5 and 3.5 GeV-squared. Simultaneous measurement of transverse and longitudinal polarizations in a polarimeter provides good control of the systematic uncertainty. The results for the ratio of the proton's electric to magnetic form factors show a systematic decrease with increasing four momentum squared, indicating for the first time a marked difference in the spatial distribution of charge and magnetization currents in the proton
    corecore